diff --git a/README.md b/README.md index e6a97d3..13989e7 100644 --- a/README.md +++ b/README.md @@ -29,7 +29,9 @@ OpenReview: [https://openreview.net/forum?id=IZfQYb4lHVq](https://openreview.net # Installation This implementation requires [Tensorflow](https://www.tensorflow.org/install/). -We have tested Noise2Void using Python 3.9 and TensorFlow 2.7 and 2.10. +We have tested Noise2Void using Python 3.9 and TensorFlow 2.7, 2.10 and 2.13. + +:warning: `n2v` is not compatible with TensorFlow 2.16 :warning: Note: If you want to use TensorFlow 1.15 you have to install N2V v0.2.1. N2V v0.3.* supports TensorFlow 2 only. @@ -44,19 +46,81 @@ conda create -n 'n2v' python=3.9 conda activate n2v ``` -## Install TensorFlow +## Install TensorFlow < 2.16 -The best way to install TensorFLow is to follow the [Tensorflow guidelines](https://www.tensorflow.org/install/pip). +Since TensorFlow 2.16, `n2v` is no longer compatible with the latest tensorflow version. Therefore we recommend installing the latest versions +with which it was tested. The following instructions are copied from TensorFlow website, using the [WayBack machinbe](https://web.archive.org/web/20030315000000*/https://www.tensorflow.org/install/pip). -Note that, after installing TensorFlow, running the following commands in your environment will allow you to use the GPU without having to each -time run an `export` command (refer to the [Tensorflow step by step](https://www.tensorflow.org/install/pip#linux_1)): -```bash +### 2.10 (tested) - Nov 22 + +Linux: +``` +conda install -c conda-forge cudatoolkit=11.2 cudnn=8.1.0 +export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:$CONDA_PREFIX/lib/ +python3 -m pip install tensorflow +``` + +macOs: +``` +# There is currently no official GPU support for MacOS. +python3 -m pip install tensorflow +``` + +Windows +``` +# Last supported Windows with GPU without WSL2 +conda install -c conda-forge cudatoolkit=11.2 cudnn=8.1.0 +python3 -m pip install tensorflow +``` + +### 2.13 (untested) - Sep 23 + +Linux: +``` bash +conda install -c conda-forge cudatoolkit=11.8.0 +python3 -m pip install nvidia-cudnn-cu11==8.6.0.163 tensorflow==2.13.* mkdir -p $CONDA_PREFIX/etc/conda/activate.d -echo 'export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:$CONDA_PREFIX/lib/' > $CONDA_PREFIX/etc/conda/activate.d/env_vars.sh +echo 'CUDNN_PATH=$(dirname $(python -c "import nvidia.cudnn;print(nvidia.cudnn.__file__)"))' >> $CONDA_PREFIX/etc/conda/activate.d/env_vars.sh +echo 'export LD_LIBRARY_PATH=$CUDNN_PATH/lib:$CONDA_PREFIX/lib/:$LD_LIBRARY_PATH' >> $CONDA_PREFIX/etc/conda/activate.d/env_vars.sh +source $CONDA_PREFIX/etc/conda/activate.d/env_vars.sh ``` -## Option 1: PIP (current stable release) +macOs: +``` bash +# There is currently no official GPU support for MacOS. +python3 -m pip install tensorflow +``` + +Windows WSL2 +``` bash +conda install -c conda-forge cudatoolkit=11.8.0 +python3 -m pip install nvidia-cudnn-cu11==8.6.0.163 tensorflow==2.13.* +mkdir -p $CONDA_PREFIX/etc/conda/activate.d +echo 'CUDNN_PATH=$(dirname $(python -c "import nvidia.cudnn;print(nvidia.cudnn.__file__)"))' >> $CONDA_PREFIX/etc/conda/activate.d/env_vars.sh +echo 'export LD_LIBRARY_PATH=$CUDNN_PATH/lib:$CONDA_PREFIX/lib/:$LD_LIBRARY_PATH' >> $CONDA_PREFIX/etc/conda/activate.d/env_vars.sh +source $CONDA_PREFIX/etc/conda/activate.d/env_vars.sh +``` + +## 2.15 (untested) - Nov 23 + +Linux: +``` bash +python3 -m pip install tensorflow[and-cuda] ``` + +macOs: +``` bash +# There is currently no official GPU support for MacOS. +python3 -m pip install tensorflow +``` + +Windows WSL2 +``` bash +python3 -m pip install tensorflow[and-cuda] +``` + +## Option 1: PIP (current stable release) +``` bash $ pip install n2v ```