-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathcreate_control_vectors.py
102 lines (88 loc) · 3.82 KB
/
create_control_vectors.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
import argparse
import gc
import sys
import signal
import torch
from model_handler import ModelHandler
from dataset_manager import DatasetManager
from hidden_state_data_manager import HiddenStateDataManager
from direction_analyzer import DirectionAnalyzer
def signal_handler(sig, frame): # @UnusedVariable
sys.exit(1)
def free_memory():
gc.collect()
torch.cuda.empty_cache()
def main(
model_id,
output_path,
prompt_stems_file_path,
continuations_file_path,
writing_prompts_file_path,
num_prompt_samples,
use_separate_system_message,
skip_begin_layers,
skip_end_layers,
discriminant_ratio_tolerance
):
signal.signal(signal.SIGINT, signal_handler)
torch.inference_mode()
torch.set_default_device("cpu")
torch.set_grad_enabled(False)
# Updated DatasetManager instantiation
dataset_manager = DatasetManager(
prompt_stems_file_path,
continuations_file_path,
writing_prompts_file_path,
num_prompt_samples
)
hidden_state_data_manager = HiddenStateDataManager(
dataset_manager,
model_id,
output_path,
use_separate_system_message
)
direction_analyzer = DirectionAnalyzer(
hidden_state_data_manager,
skip_begin_layers,
skip_end_layers,
discriminant_ratio_tolerance
)
for i, direction_matrices_by_class in enumerate(direction_analyzer.direction_matrices):
if any(direction_matrix_by_layer is not None for direction_matrix_by_layer in direction_matrices_by_class):
# Free as much memory as possible and reload unquantized into system RAM.
free_memory()
model_handler = ModelHandler(
model_id,
device = "cpu"
)
if i == 0:
name = "debias"
else:
name = dataset_manager.class_names[i]
# Save as control vectors in '.gguf' format.
model_handler.export_gguf(direction_matrices_by_class, output_path + f"_{name}.gguf")
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="Modify and save a model based on baseline, desired and undesired instructions.")
parser.add_argument("--model_id", type=str, required=True, help="The model ID to load the pretrained model from.")
parser.add_argument("--output_path", type=str, required=True, help="The path to save the modified models to.")
parser.add_argument("--prompt_stems_file", type=str, required=True, help="The file path for prompt stems.")
parser.add_argument("--continuations_file", type=str, required=True, help="The file path for continuations.")
parser.add_argument("--writing_prompts_file", type=str, required=True, help="The file path for writing prompts.")
parser.add_argument("--num_prompt_samples", type = int, default = 10000, help = "The number of prompts to sample per class.")
parser.add_argument("--use_separate_system_message", action="store_true", default=False, help="Use separate system message in conversation.")
parser.add_argument("--skip_begin_layers", type = int, default = 0, help = "The number (or fraction) of initial layers to skip.")
parser.add_argument("--skip_end_layers", type = int, default = 1, help = "The number (or fraction) of end layers to skip.")
parser.add_argument("--discriminant_ratio_tolerance", type = float, default = 0.5, help = "Used to filter low signal \"noise\" directions (0 = none).")
args = parser.parse_args()
main(
args.model_id,
args.output_path,
args.prompt_stems_file,
args.continuations_file,
args.writing_prompts_file,
args.num_prompt_samples,
args.use_separate_system_message,
args.skip_begin_layers,
args.skip_end_layers,
args.discriminant_ratio_tolerance
)