-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path.env.sample
51 lines (39 loc) · 1.48 KB
/
.env.sample
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
# /\ Make sure to
# / \ replicate the ones
# / || \ you need on Cloud Run
# / || \ also in your
# / || \ .env.yaml file
# / .. \ so that it also works
# /____________\ on Cloud Run
# Storage locations (only if you use it)
# LOCAL_DATA_PATH=raw_data
# LOCAL_REGISTRY_PATH=models
# Data source (only if you use it)
# Replace with 'cloud' to source from cloud (depending on how you write your functions)
# DATA_SOURCE=local
# MODEL_TARGET=local
# GCP Project
GCP_PROJECT=project-id-123456
GCP_REGION=europe-west1
# On GCP console, create a new service account for your project, create a new key,
# save it on your local drive (make sure its .gitignored!), and add the path to it here
# GOOGLE_APPLICATION_CREDENTIALS=credentials.json
# Cloud Storage (only if you use it)
# BUCKET_NAME=your-bucket-name
# Folder in your bucket where raw_data is stored
# RAW_DATA_LOCATION=raw_data
# Folder in your bucket where your model is stored
# MODELS_LOCATION=models
# BigQuery (only if you use it)
# BQ_REGION=EU
# DATASET=your_dataset
# Compute Engine (only if you use it)
# INSTANCE=instance_name
# Model Lifecycle (only if you use it)
# MLFLOW_TRACKING_URI=https://mlflow.lewagon.ai
# MLFLOW_EXPERIMENT=project_name_experiment_<user.github_nickname>
# MLFLOW_MODEL_NAME=project_name_<user.github_nickname>
# Docker
DOCKER_LOCAL_PORT=8080
DOCKER_REPO_NAME=docker
DOCKER_IMAGE_NAME=api