-
Notifications
You must be signed in to change notification settings - Fork 6
/
train_free.py
executable file
·247 lines (223 loc) · 14.2 KB
/
train_free.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
from tools.loading import load_models,load_datasets,load_optimizer, ANNEAL_TYPE
from tools.others import sample_ZCs,make_bin_label,x_R_proccess_free, init_list, PGD_FREE_TYPE
from tools.metric import get_metrics, set_hinge_bd
from tools.adv_tools.pgd_free import l2_cliper
import torch.optim as optim
from torchvision.utils import save_image
import argparse
import torch
import time
from tools.metric import Metric_Types
import math
import numpy as np
import os
import random
parser = argparse.ArgumentParser()
parser.add_argument('--random_seed', type=int, default=10, help = 'random seed')
parser.add_argument('--net', type=str, required=True, help='GAN structure: sngan_cifar, sngan_catdog64, sngan_catdog128, sngan_imgnet128, biggan')
parser.add_argument('--dim_z', type=int, required=True, help = 'dimension of nosie Z')
parser.add_argument('--img_c', type=int, required=True, help = 'image color channels')
parser.add_argument('--fm_base_g', type=int, required=True, help = 'conv layer channels multiplier for g')
parser.add_argument('--fm_base_d', type=int, required=True, help = 'conv layer channels multiplier for d')
parser.add_argument('--n_classes', type=int, required=True, help = 'number of classes')
parser.add_argument('--r_batch_size', type=int, required=True, help = 'real batch size')
parser.add_argument('--g_batch_size', type=int, required=True, help = 'fake batch size')
parser.add_argument('--num_bp', type=int, required=True, help = 'num of backprop to accumulate')
parser.add_argument('--data_path', type=str, required=True, help = 'dataset path')
parser.add_argument('--out_path', type=str, required=True, help = 'path of result to save, gen_*.pth and dis_*.pth')
parser.add_argument('--bottom_width', type=int, required=True, help = 'the width of feature maps at the first layer of G')
parser.add_argument('--img_width', type=int, required=True, help = 'the width of imgs')
parser.add_argument('--itr_d', type=int, required=True, help = 'MAX_D_STEP')
parser.add_argument('--lr_d', type=float, required=True, help = 'learning rate for D')
parser.add_argument('--beta1_d', type=float, required=True, help = 'adam b1 for D')
parser.add_argument('--beta2_d', type=float, required=True, help = 'adam b2 for D')
parser.add_argument('--itr_g', type=int, required=True, help = 'efault to 1')
parser.add_argument('--lr_g', type=float, required=True, help = 'learning rate for G')
parser.add_argument('--beta1_g', type=float, required=True, help = 'adam b1 for G')
parser.add_argument('--beta2_g', type=float, required=True, help = 'adam b2 for G')
parser.add_argument('--anneal_lr', type=str, default='nll', help = 'lr anneall type: exp, linear')
parser.add_argument('--anneal_lr_p1', type=float, default=1, help = 'lr anneal p1 respect to total_itrs')
parser.add_argument('--anneal_lr_p2', type=int, default=1, help = 'lr anneal p2 iters respect to total_itrs')
parser.add_argument('--n_gpu', type=int, required=True, help = 'num of gpus')
parser.add_argument('--dali', action='store_true', default=False, help = 'if use nvidia dali to load image')
parser.add_argument('--da', action='store_true', default=False, help = 'data augmentation?')
parser.add_argument('--n_workers', type=int, required=True, help = 'num of dataloader works')
parser.add_argument('--G_total_itrs', type=int, required=True, help = 'total updates of gen(total itrs)')
parser.add_argument('--wide', action='store_true', default=False, help = 'if use wide D')
parser.add_argument('--bn_d', action='store_true', default=False, help = 'if use batch_norm in D')
parser.add_argument('--bn_g', action='store_true', default=False, help = 'if use batch_norm in G')
parser.add_argument('--sn_d', action='store_true', default=False, help = 'if use sepcture_norm in D')
parser.add_argument('--sn_g', action='store_true', default=False, help = 'if use sepcture_norm in G')
parser.add_argument('--sa_d', action='store_true', default=False, help = 'if use self-attetion in D')
parser.add_argument('--sa_g', action='store_true', default=False, help = 'if use self-attetion in G')
parser.add_argument('--Z_dist', type=str, default='normal', help = 'Z noise distribution type: normal')
parser.add_argument('--Z_p1', type=float, default=0., help = 'Z noise distribution parameter 1')
parser.add_argument('--Z_p2', type=float, default=1., help = 'Z noise distribution parameter 2')
parser.add_argument('--save_bias', type=int, required=True, help = 'save bias respect to iterations')
parser.add_argument('--start_itr', type=int, default=0, help = 'start itrs, 0 means new training')
parser.add_argument('--shuffle', action='store_true', default=False, help = 'if shuffle data')
parser.add_argument('--b_metric', type=str, default='ce',help='bin loss for training, ce for cross_entropy, or hinge')
parser.add_argument('--c_metric', type=str, default='ce',help='class loss for training, ce for cross_entropy, or hinge projection, ce_kl for ce with KL in L^f_D')
parser.add_argument('--c_alph_f', type=float, default=1.0,help = 'class loss coefficient of fake data for D')
parser.add_argument('--c_alph_r', type=float, default=1.0,help = 'class loss coefficient of real data for D')
parser.add_argument('--c_alph_g', type=float, default=1.0,help = 'class loss coefficient of generated data for G')
parser.add_argument('--hinge_bd', type=float, default=1.0,help = 'margin boudary of hinge loss')
parser.add_argument('--pgd_free_steps', type=int, required=True, help = 'number of steps for pgd free')
parser.add_argument('--pgd_type', type=str, required=True, help = 'Linf or L2')
parser.add_argument('--pgd_eps', type=float, required=True, help = 'radius of Linf-norm ball for pgd attack')
parser.add_argument('--pgd_tau', type=float, required=True, help = 'lr of sgd for pgd attack')
parser.add_argument('--pgd_rs', action='store_true', default=True, help = 'flag to random start pgd attack')
opt = parser.parse_args()
print(opt)
torch.manual_seed(opt.random_seed)
np.random.seed(opt.random_seed)
set_hinge_bd(opt.hinge_bd)
def train():
lr_str = 'lr'
Z_dist = opt.Z_dist
Z_params = [opt.Z_p1,opt.Z_p2]
sigma = 1e-8
# models
netG,netD = load_models(net=opt.net,n_gpu=opt.n_gpu,dim_z=opt.dim_z,img_c=opt.img_c,img_width=opt.img_width,\
fm_base_d=opt.fm_base_d,fm_base_g=opt.fm_base_g,bn_d=opt.bn_d,bn_g=opt.bn_g,sn_d=opt.sn_d,sn_g=opt.sn_g,\
sa_d=opt.sa_d,sa_g=opt.sa_g,bottom_width=opt.bottom_width,n_classes=opt.n_classes,c_metric=opt.c_metric,wide=opt.wide)
if opt.start_itr>0:
netG.load_state_dict(torch.load(f'{opt.out_path}check_pts/gen_{opt.start_itr}.pth'))
netD.load_state_dict(torch.load(f'{opt.out_path}check_pts/dis_{opt.start_itr}.pth'))
G_itrs = int(opt.start_itr*opt.save_bias-1)
D_itrs = int(G_itrs*(opt.itr_d/opt.itr_g))
# optimizers
optimizerG = load_optimizer(model=netG,lr=opt.lr_g,betas=(opt.beta1_g,opt.beta2_g))
optimizerD = load_optimizer(model=netD,lr=opt.lr_d,betas=(opt.beta1_d,opt.beta2_d))
# lr anneal
if opt.anneal_lr in ANNEAL_TYPE:
if opt.anneal_lr==ANNEAL_TYPE[0]:
lr_lambda_D = lambda epoch: max(int(G_itrs<=opt.anneal_lr_p1),int(G_itrs>opt.anneal_lr_p1)*(opt.G_total_itrs-G_itrs)/(opt.G_total_itrs-opt.anneal_lr_p1))
lr_lambda_G = lambda epoch: max(int(G_itrs<=opt.anneal_lr_p1),int(G_itrs>opt.anneal_lr_p1)*(opt.G_total_itrs-G_itrs)/(opt.G_total_itrs-opt.anneal_lr_p1))
elif opt.anneal_lr==ANNEAL_TYPE[1]:
lr_lambda_D = lambda epoch: opt.anneal_lr_p1 ** (G_itrs/opt.anneal_lr_p2)
lr_lambda_G = lambda epoch: opt.anneal_lr_p1 ** (G_itrs/opt.anneal_lr_p2)
lr_adjuster_D = torch.optim.lr_scheduler.LambdaLR(optimizerD, lr_lambda_D, last_epoch=-1)
lr_adjuster_G = torch.optim.lr_scheduler.LambdaLR(optimizerG, lr_lambda_G, last_epoch=-1)
if opt.r_batch_size<=0:
raise ValueError(f"batch size must >0")
if opt.r_batch_size>0:
loader,class2idx = load_datasets(data_path=opt.data_path,img_width=opt.img_width, \
batch_size=opt.r_batch_size,n_workers=opt.n_workers,n_gpu=opt.n_gpu,shuffle=opt.shuffle,dali=opt.dali,seed=opt.random_seed,da=opt.da)
loader_iter = iter(loader)
fixed_Z,fixed_C_int,fixed_C_vec = sample_ZCs(64,opt.dim_z,opt.n_classes,Z_dist,Z_params,opt.n_gpu)
print("Starting GAN Training Loop...")
Metric_G, Metric_R, Metric_F = get_metrics()
D_err_R,D_err_F,G_err,D_cnt,G_cnt=0,0,0,0,0
tpts = time.time()
itrs = 0
delta = torch.zeros([opt.r_batch_size, opt.img_c, opt.img_width, opt.img_width]) # free accumulated perturbation
if opt.n_gpu>0:
delta = delta.cuda()
if opt.pgd_rs: # perturbation init
delta.normal_()
if opt.pgd_type==PGD_FREE_TYPE[0]:
delta.clamp_(-opt.pgd_eps,opt.pgd_eps)
elif opt.pgd_type==PGD_FREE_TYPE[1]:
delta = l2_cliper(delta,opt.pgd_eps,opt.n_gpu)
delta = list(torch.chunk(delta,opt.num_bp))
while G_itrs<opt.G_total_itrs:
# load data
if opt.r_batch_size>0:
try:
data = next(loader_iter)
except StopIteration:
loader_iter = iter(loader)
data = next(loader_iter)
x_R = data[0]["data"] if opt.dali else data[0]
y_R_c = data[0]["label"].view(-1).long() if opt.dali else data[1]
else:
x_R = torch.zeros(0, opt.img_c, opt.img_width,opt.img_width)
y_R_c = torch.full((0,), 0).long()
# to cuda ?
if opt.n_gpu>0:
x_R, y_R_c = x_R.cuda(), y_R_c.cuda()
x_R, y_R_c = list(torch.chunk(x_R,opt.num_bp)),list(torch.chunk(y_R_c,opt.num_bp))
r_BS, g_BS = init_list(opt.num_bp),init_list(opt.num_bp)
for bp_i in range(opt.num_bp):
r_BS[bp_i] = x_R[bp_i].size(0)
g_BS[bp_i] = int(opt.g_batch_size/opt.num_bp)
if opt.g_batch_size%opt.num_bp !=0:
g_BS[-1] = opt.g_batch_size%opt.num_bp
y_R_b = init_list(opt.num_bp)
y_G_b,y_F_b = init_list(opt.num_bp),init_list(opt.num_bp)
for bp_i in range(opt.num_bp):
y_R_b[bp_i],y_G_b[bp_i],y_F_b[bp_i] = make_bin_label(r_BS[bp_i],g_BS[bp_i],opt.n_gpu) # prepare inputs and label
############################
# (1) Update D network:
###########################
if itrs%opt.itr_g==0:
D_itrs += 1
# Train with all-real batch
x_F, y_F_c = init_list(opt.num_bp),init_list(opt.num_bp)
for bp_i in range(opt.num_bp):
# produce fake imgs from G
Z, C_int, C_vec = sample_ZCs(g_BS[bp_i],opt.dim_z,opt.n_classes,Z_dist,Z_params,opt.n_gpu) # z <- Normal(0,1)
x_F[bp_i] = netG(Z,C_vec).detach() # x_F <- G(z)
y_F_c[bp_i] = C_int.view(-1)
for free_step in range(opt.pgd_free_steps):
D_cnt += 1
netD.zero_grad()
for bp_i in range(opt.num_bp):
# g_xR, g_wDr <- D(x_R)
delta[bp_i], loss_dis_R = x_R_proccess_free(netD=netD,x_R=x_R[bp_i],y_R_b=y_R_b[bp_i],y_R_c=y_R_c[bp_i],metric = Metric_R,\
delta=delta[bp_i], pgd_type=opt.pgd_type, pgd_eps=opt.pgd_eps, pgd_tau=opt.pgd_tau,\
b_metric=opt.b_metric,c_metric=opt.c_metric, c_alph=opt.c_alph_r,n_gpu=opt.n_gpu,num_bp=opt.num_bp)
D_err_R += (loss_dis_R.item())
o_F_b,o_F_c = netD(x_F[bp_i],y_F_c[bp_i])
loss_dis_F = Metric_F(o_F_b,o_F_c,y_F_b[bp_i],y_F_c[bp_i],opt.b_metric,opt.c_metric,1.0,opt.c_alph_f)
loss_dis_F = (loss_dis_F/opt.num_bp)
loss_dis_F.backward() # g_wDf <- D(x_F)
D_err_F += (loss_dis_F.item())
optimizerD.step() # wD <- wD - (g_wDf + g_wDr) * lr
if itrs % opt.itr_d == 0:
G_cnt += 1
G_itrs += 1
############################
# (2) Update G network:
###########################
netD.zero_grad()
netG.zero_grad()
for bp_i in range(opt.num_bp):
Z, C_int, C_vec = sample_ZCs(g_BS[bp_i],opt.dim_z,opt.n_classes,Z_dist,Z_params,opt.n_gpu)
y_G_c = C_int.view(-1)
x_G = netG(Z,C_vec)
o_G_b,o_G_c = netD(x_G,y_G_c)
loss_gen = Metric_G(o_G_b,o_G_c,y_G_b[bp_i],y_G_c,opt.b_metric,opt.c_metric,opt.c_alph_g)
loss_gen = (loss_gen/opt.num_bp)
G_err += loss_gen.item()
loss_gen.backward() # g_wG <- D(G(z))
optimizerG.step() # wG <- wG - g_wG * lr
if G_itrs%opt.save_bias == 0 and (itrs % opt.itr_d==0):
print(f'Training[{G_itrs}/{opt.G_total_itrs}] G_loss:{round(G_err/(G_cnt+sigma),3)},D_real:{round(D_err_R/(D_cnt+sigma),3)},D_fake:{round(D_err_F/(D_cnt+sigma),3)},secs:{round(time.time()-tpts,1)},lrD:{round(optimizerD.param_groups[0][lr_str],8)},lrG:{round(optimizerG.param_groups[0][lr_str],8)},r:{opt.r_batch_size},g:{opt.g_batch_size}')
D_err_R,D_err_F,G_err,D_cnt,G_cnt=0,0,0,0,0
tpts = time.time()
curr_pts = int(G_itrs/opt.save_bias)
with torch.no_grad():
fixed_x_fake = netG(fixed_Z,fixed_C_vec)
fixed_x_fake.data.mul_(0.5).add_(0.5)
fixed_x_fake = fixed_x_fake.view(64,opt.img_c,opt.img_width,opt.img_width)
save_image(fixed_x_fake.data, f'{opt.out_path}imgs/{curr_pts}.png', nrow=8)
torch.save(netG.state_dict(), f'{opt.out_path}check_pts/gen_{curr_pts}.pth')
torch.save(netD.state_dict(), f'{opt.out_path}check_pts/dis_{curr_pts}.pth')
# anneal part
if opt.anneal_lr in ANNEAL_TYPE:
lr_adjuster_G.step()
lr_adjuster_D.step()
# finally add itrs for keeping count continuing
itrs += 1
if __name__ == "__main__":
if not os.path.exists(opt.out_path):
raise ValueError(f"No output path {opt.out_path}")
if not os.path.exists(opt.out_path+'/check_pts'):
os.makedirs(opt.out_path+'/check_pts')
if not os.path.exists(opt.out_path+'/imgs'):
os.makedirs(opt.out_path+'/imgs')
if not os.path.exists(opt.out_path+'/log'):
os.makedirs(opt.out_path+'/log')
train()