-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathhetero_graph_gen.py
62 lines (58 loc) · 3.11 KB
/
hetero_graph_gen.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
# This file is copied from the official repo of Geom-GCN
import os
import networkx as nx
import numpy as np
import dgl
import scipy.sparse as sp
import torch
for dataset_name in ['film', 'chameleon', 'squirrel']:
graph_adjacency_list_file_path = os.path.join('new_data', dataset_name, 'out1_graph_edges.txt')
graph_node_features_and_labels_file_path = os.path.join('new_data', dataset_name,
f'out1_node_feature_label.txt')
G = nx.DiGraph()
graph_node_features_dict = {}
graph_labels_dict = {}
if dataset_name == 'film':
with open(graph_node_features_and_labels_file_path) as graph_node_features_and_labels_file:
graph_node_features_and_labels_file.readline()
for line in graph_node_features_and_labels_file:
line = line.rstrip().split('\t')
assert (len(line) == 3)
assert (int(line[0]) not in graph_node_features_dict and int(line[0]) not in graph_labels_dict)
feature_blank = np.zeros(932, dtype=np.uint8)
feature_blank[np.array(line[1].split(','), dtype=np.uint16)] = 1
graph_node_features_dict[int(line[0])] = feature_blank
graph_labels_dict[int(line[0])] = int(line[2])
else:
with open(graph_node_features_and_labels_file_path) as graph_node_features_and_labels_file:
graph_node_features_and_labels_file.readline()
for line in graph_node_features_and_labels_file:
line = line.rstrip().split('\t')
assert (len(line) == 3)
assert (int(line[0]) not in graph_node_features_dict and int(line[0]) not in graph_labels_dict)
graph_node_features_dict[int(line[0])] = np.array(line[1].split(','), dtype=np.uint8)
graph_labels_dict[int(line[0])] = int(line[2])
with open(graph_adjacency_list_file_path) as graph_adjacency_list_file:
graph_adjacency_list_file.readline()
for line in graph_adjacency_list_file:
line = line.rstrip().split('\t')
assert (len(line) == 2)
if int(line[0]) not in G:
G.add_node(int(line[0]), features=graph_node_features_dict[int(line[0])],
label=graph_labels_dict[int(line[0])])
if int(line[1]) not in G:
G.add_node(int(line[1]), features=graph_node_features_dict[int(line[1])],
label=graph_labels_dict[int(line[1])])
G.add_edge(int(line[0]), int(line[1]))
adj = nx.adjacency_matrix(G, sorted(G.nodes()))
features = np.array(
[features for _, features in sorted(G.nodes(data='features'), key=lambda x: x[0])])
labels = np.array(
[label for _, label in sorted(G.nodes(data='label'), key=lambda x: x[0])])
g = dgl.DGLGraph(adj)
g = dgl.add_reverse_edges(g)
g.ndata['feat'] = torch.tensor(features, dtype=torch.float32)
g.ndata['label'] = torch.tensor(labels, dtype=torch.int32)
if dataset_name == 'film':
dataset_name = 'actor'
dgl.save_graphs('hetero_graphs/'+dataset_name+'.bin', [g])