forked from ocaml/ocaml
-
Notifications
You must be signed in to change notification settings - Fork 0
/
hashtbl.mli
643 lines (517 loc) · 23.6 KB
/
hashtbl.mli
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
(**************************************************************************)
(* *)
(* OCaml *)
(* *)
(* Xavier Leroy, projet Cristal, INRIA Rocquencourt *)
(* *)
(* Copyright 1996 Institut National de Recherche en Informatique et *)
(* en Automatique. *)
(* *)
(* All rights reserved. This file is distributed under the terms of *)
(* the GNU Lesser General Public License version 2.1, with the *)
(* special exception on linking described in the file LICENSE. *)
(* *)
(**************************************************************************)
(* NOTE: If this file is hashtbl.mli, do not edit it directly! Instead,
edit templates/hashtbl.template.mli and run tools/sync_stdlib_docs *)
(** Hash tables and hash functions.
Hash tables are hashed association tables, with in-place modification.
Because most operations on a hash table modify their input, they're
more commonly used in imperative code. The lookup of the value associated
with a key (see {!find}, {!find_opt}) is normally very fast, often faster
than the equivalent lookup in {!Map}.
The functors {!Make} and {!MakeSeeded} can be used when
performance or flexibility are key.
The user provides custom equality and hash functions for the key type,
and obtains a custom hash table type for this particular type of key.
{b Warning} a hash table is only as good as the hash function. A bad hash
function will turn the table into a degenerate association list,
with linear time lookup instead of constant time lookup.
The polymorphic {!t} hash table is useful in simpler cases or
in interactive environments. It uses the polymorphic {!hash} function
defined in the OCaml runtime (at the time of writing, it's SipHash),
as well as the polymorphic equality [(=)].
See {{!examples} the examples section}.
*)
(** {b Unsynchronized accesses} *)
[@@@warning "-53"]
[@@@alert unsynchronized_access
"Unsynchronized accesses to hash tables are a programming error."
]
[@@@warning "+53"]
(**
Unsynchronized accesses to a hash table may lead to an invalid hash table
state. Thus, concurrent accesses to a hash tables must be synchronized
(for instance with a {!Mutex.t}).
*)
(** {1 Generic interface} *)
type (!'a, !'b) t
(** The type of hash tables from type ['a] to type ['b]. *)
val create : ?random: (* thwart tools/sync_stdlib_docs *) bool ->
int -> ('a, 'b) t
(** [Hashtbl.create n] creates a new, empty hash table, with
initial size [n]. For best results, [n] should be on the
order of the expected number of elements that will be in
the table. The table grows as needed, so [n] is just an
initial guess.
The optional [~random] parameter (a boolean) controls whether
the internal organization of the hash table is randomized at each
execution of [Hashtbl.create] or deterministic over all executions.
A hash table that is created with [~random] set to [false] uses a
fixed hash function ({!hash}) to distribute keys among
buckets. As a consequence, collisions between keys happen
deterministically. In Web-facing applications or other
security-sensitive applications, the deterministic collision
patterns can be exploited by a malicious user to create a
denial-of-service attack: the attacker sends input crafted to
create many collisions in the table, slowing the application down.
A hash table that is created with [~random] set to [true] uses the seeded
hash function {!seeded_hash} with a seed that is randomly chosen at hash
table creation time. In effect, the hash function used is randomly
selected among [2^{30}] different hash functions. All these hash
functions have different collision patterns, rendering ineffective the
denial-of-service attack described above. However, because of
randomization, enumerating all elements of the hash table using {!fold}
or {!iter} is no longer deterministic: elements are enumerated in
different orders at different runs of the program.
If no [~random] parameter is given, hash tables are created
in non-random mode by default. This default can be changed
either programmatically by calling {!randomize} or by
setting the [R] flag in the [OCAMLRUNPARAM] environment variable.
@before 4.00 the [~random] parameter was not present and all
hash tables were created in non-randomized mode. *)
val clear : ('a, 'b) t -> unit
(** Empty a hash table. Use [reset] instead of [clear] to shrink the
size of the bucket table to its initial size. *)
val reset : ('a, 'b) t -> unit
(** Empty a hash table and shrink the size of the bucket table
to its initial size.
@since 4.00 *)
val copy : ('a, 'b) t -> ('a, 'b) t
(** Return a copy of the given hashtable. *)
val add : ('a, 'b) t -> 'a -> 'b -> unit
(** [Hashtbl.add tbl key data] adds a binding of [key] to [data]
in table [tbl].
{b Warning}: Previous bindings for [key] are not removed, but simply
hidden. That is, after performing {!remove}[ tbl key],
the previous binding for [key], if any, is restored.
(Same behavior as with association lists.)
If you desire the classic behavior of replacing elements,
see {!replace}. *)
val find : ('a, 'b) t -> 'a -> 'b
(** [Hashtbl.find tbl x] returns the current binding of [x] in [tbl],
or raises [Not_found] if no such binding exists. *)
val find_opt : ('a, 'b) t -> 'a -> 'b option
(** [Hashtbl.find_opt tbl x] returns the current binding of [x] in [tbl],
or [None] if no such binding exists.
@since 4.05 *)
val find_all : ('a, 'b) t -> 'a -> 'b list
(** [Hashtbl.find_all tbl x] returns the list of all data
associated with [x] in [tbl].
The current binding is returned first, then the previous
bindings, in reverse order of introduction in the table. *)
val mem : ('a, 'b) t -> 'a -> bool
(** [Hashtbl.mem tbl x] checks if [x] is bound in [tbl]. *)
val remove : ('a, 'b) t -> 'a -> unit
(** [Hashtbl.remove tbl x] removes the current binding of [x] in [tbl],
restoring the previous binding if it exists.
It does nothing if [x] is not bound in [tbl]. *)
val replace : ('a, 'b) t -> 'a -> 'b -> unit
(** [Hashtbl.replace tbl key data] replaces the current binding of [key]
in [tbl] by a binding of [key] to [data]. If [key] is unbound in [tbl],
a binding of [key] to [data] is added to [tbl].
This is functionally equivalent to {!remove}[ tbl key]
followed by {!add}[ tbl key data]. *)
val iter : ('a -> 'b -> unit) -> ('a, 'b) t -> unit
(** [Hashtbl.iter f tbl] applies [f] to all bindings in table [tbl].
[f] receives the key as first argument, and the associated value
as second argument. Each binding is presented exactly once to [f].
The order in which the bindings are passed to [f] is unspecified.
However, if the table contains several bindings for the same key,
they are passed to [f] in reverse order of introduction, that is,
the most recent binding is passed first.
If the hash table was created in non-randomized mode, the order
in which the bindings are enumerated is reproducible between
successive runs of the program, and even between minor versions
of OCaml. For randomized hash tables, the order of enumeration
is entirely random.
The behavior is not specified if the hash table is modified
by [f] during the iteration.
*)
val filter_map_inplace: ('a -> 'b -> 'b option) -> ('a, 'b) t ->
unit
(** [Hashtbl.filter_map_inplace f tbl] applies [f] to all bindings in
table [tbl] and update each binding depending on the result of
[f]. If [f] returns [None], the binding is discarded. If it
returns [Some new_val], the binding is update to associate the key
to [new_val].
Other comments for {!iter} apply as well.
@since 4.03 *)
val fold :
('a -> 'b -> 'acc -> 'acc) -> ('a, 'b) t -> 'acc -> 'acc
(** [Hashtbl.fold f tbl init] computes
[(f kN dN ... (f k1 d1 init)...)],
where [k1 ... kN] are the keys of all bindings in [tbl],
and [d1 ... dN] are the associated values.
Each binding is presented exactly once to [f].
The order in which the bindings are passed to [f] is unspecified.
However, if the table contains several bindings for the same key,
they are passed to [f] in reverse order of introduction, that is,
the most recent binding is passed first.
If the hash table was created in non-randomized mode, the order
in which the bindings are enumerated is reproducible between
successive runs of the program, and even between minor versions
of OCaml. For randomized hash tables, the order of enumeration
is entirely random.
The behavior is not specified if the hash table is modified
by [f] during the iteration.
*)
val length : ('a, 'b) t -> int
(** [Hashtbl.length tbl] returns the number of bindings in [tbl].
It takes constant time. Multiple bindings are counted once each, so
[Hashtbl.length] gives the number of times [Hashtbl.iter] calls its
first argument. *)
val randomize : unit -> unit
(** After a call to [Hashtbl.randomize()], hash tables are created in
randomized mode by default: {!create} returns randomized
hash tables, unless the [~random:false] optional parameter is given.
The same effect can be achieved by setting the [R] parameter in
the [OCAMLRUNPARAM] environment variable.
It is recommended that applications or Web frameworks that need to
protect themselves against the denial-of-service attack described
in {!create} call [Hashtbl.randomize()] at initialization
time before any domains are created.
Note that once [Hashtbl.randomize()] was called, there is no way
to revert to the non-randomized default behavior of {!create}.
This is intentional. Non-randomized hash tables can still be
created using [Hashtbl.create ~random:false].
@since 4.00 *)
val is_randomized : unit -> bool
(** Return [true] if the tables are currently created in randomized mode
by default, [false] otherwise.
@since 4.03 *)
val rebuild : ?random (* thwart tools/sync_stdlib_docs *) :bool ->
('a, 'b) t -> ('a, 'b) t
(** Return a copy of the given hashtable. Unlike {!copy},
{!rebuild}[ h] re-hashes all the (key, value) entries of
the original table [h]. The returned hash table is randomized if
[h] was randomized, or the optional [random] parameter is true, or
if the default is to create randomized hash tables; see
{!create} for more information.
{!rebuild} can safely be used to import a hash table built
by an old version of the {!Hashtbl} module, then marshaled to
persistent storage. After unmarshaling, apply {!rebuild}
to produce a hash table for the current version of the {!Hashtbl}
module.
@since 4.12 *)
(** @since 4.00 *)
type statistics = {
num_bindings: int;
(** Number of bindings present in the table.
Same value as returned by {!length}. *)
num_buckets: int;
(** Number of buckets in the table. *)
max_bucket_length: int;
(** Maximal number of bindings per bucket. *)
bucket_histogram: int array
(** Histogram of bucket sizes. This array [histo] has
length [max_bucket_length + 1]. The value of
[histo.(i)] is the number of buckets whose size is [i]. *)
}
val stats : ('a, 'b) t -> statistics
(** [Hashtbl.stats tbl] returns statistics about the table [tbl]:
number of buckets, size of the biggest bucket, distribution of
buckets by size.
@since 4.00 *)
(** {1 Hash tables and Sequences} *)
val to_seq : ('a,'b) t -> ('a * 'b) Seq.t
(** Iterate on the whole table. The order in which the bindings
appear in the sequence is unspecified. However, if the table contains
several bindings for the same key, they appear in reversed order of
introduction, that is, the most recent binding appears first.
The behavior is not specified if the hash table is modified
during the iteration.
@since 4.07 *)
val to_seq_keys : ('a,_) t -> 'a Seq.t
(** Same as [Seq.map fst (to_seq m)]
@since 4.07 *)
val to_seq_values : (_,'b) t -> 'b Seq.t
(** Same as [Seq.map snd (to_seq m)]
@since 4.07 *)
val add_seq : ('a,'b) t -> ('a * 'b) Seq.t -> unit
(** Add the given bindings to the table, using {!add}
@since 4.07 *)
val replace_seq : ('a,'b) t -> ('a * 'b) Seq.t -> unit
(** Add the given bindings to the table, using {!replace}
@since 4.07 *)
val of_seq : ('a * 'b) Seq.t -> ('a, 'b) t
(** Build a table from the given bindings. The bindings are added
in the same order they appear in the sequence, using {!replace_seq},
which means that if two pairs have the same key, only the latest one
will appear in the table.
@since 4.07 *)
(** {1 Functorial interface} *)
(** The functorial interface allows the use of specific comparison
and hash functions, either for performance/security concerns,
or because keys are not hashable/comparable with the polymorphic builtins.
For instance, one might want to specialize a table for integer keys:
{[
module IntHash =
struct
type t = int
let equal i j = i=j
let hash i = i land max_int
end
module IntHashtbl = Hashtbl.Make(IntHash)
let h = IntHashtbl.create 17 in
IntHashtbl.add h 12 "hello"
]}
This creates a new module [IntHashtbl], with a new type ['a
IntHashtbl.t] of tables from [int] to ['a]. In this example, [h]
contains [string] values so its type is [string IntHashtbl.t].
Note that the new type ['a IntHashtbl.t] is not compatible with
the type [('a,'b) Hashtbl.t] of the generic interface. For
example, [Hashtbl.length h] would not type-check, you must use
[IntHashtbl.length].
*)
module type HashedType =
sig
type t
(** The type of the hashtable keys. *)
val equal : t -> t -> bool
(** The equality predicate used to compare keys. *)
val hash : t -> int
(** A hashing function on keys. It must be such that if two keys are
equal according to [equal], then they have identical hash values
as computed by [hash].
Examples: suitable ([equal], [hash]) pairs for arbitrary key
types include
- ([(=)], {!hash}) for comparing objects by structure
(provided objects do not contain floats)
- ([(fun x y -> compare x y = 0)], {!hash})
for comparing objects by structure
and handling {!Stdlib.nan} correctly
- ([(==)], {!hash}) for comparing objects by physical
equality (e.g. for mutable or cyclic objects). *)
end
(** The input signature of the functor {!Make}. *)
module type S =
sig
type key
type !'a t
val create : int -> 'a t
val clear : 'a t -> unit
val reset : 'a t -> unit (** @since 4.00 *)
val copy : 'a t -> 'a t
val add : 'a t -> key -> 'a -> unit
val remove : 'a t -> key -> unit
val find : 'a t -> key -> 'a
val find_opt : 'a t -> key -> 'a option
(** @since 4.05 *)
val find_all : 'a t -> key -> 'a list
val replace : 'a t -> key -> 'a -> unit
val mem : 'a t -> key -> bool
val iter : (key -> 'a -> unit) -> 'a t -> unit
val filter_map_inplace: (key -> 'a -> 'a option) -> 'a t ->
unit
(** @since 4.03 *)
val fold :
(key -> 'a -> 'acc -> 'acc) -> 'a t -> 'acc -> 'acc
val length : 'a t -> int
val stats: 'a t -> statistics (** @since 4.00 *)
val to_seq : 'a t -> (key * 'a) Seq.t
(** @since 4.07 *)
val to_seq_keys : _ t -> key Seq.t
(** @since 4.07 *)
val to_seq_values : 'a t -> 'a Seq.t
(** @since 4.07 *)
val add_seq : 'a t -> (key * 'a) Seq.t -> unit
(** @since 4.07 *)
val replace_seq : 'a t -> (key * 'a) Seq.t -> unit
(** @since 4.07 *)
val of_seq : (key * 'a) Seq.t -> 'a t
(** @since 4.07 *)
end
(** The output signature of the functor {!Make}. *)
module Make (H : HashedType) : S with type key = H.t
(** Functor building an implementation of the hashtable structure.
The functor [Hashtbl.Make] returns a structure containing
a type [key] of keys and a type ['a t] of hash tables
associating data of type ['a] to keys of type [key].
The operations perform similarly to those of the generic
interface, but use the hashing and equality functions
specified in the functor argument [H] instead of generic
equality and hashing. Since the hash function is not seeded,
the [create] operation of the result structure always returns
non-randomized hash tables. *)
module type SeededHashedType =
sig
type t
(** The type of the hashtable keys. *)
val equal: t -> t -> bool
(** The equality predicate used to compare keys. *)
val seeded_hash: int -> t -> int
(** A seeded hashing function on keys. The first argument is
the seed. It must be the case that if [equal x y] is true,
then [seeded_hash seed x = seeded_hash seed y] for any value of
[seed]. A suitable choice for [seeded_hash] is the function
{!Hashtbl.seeded_hash} below. *)
end
(** The input signature of the functor {!MakeSeeded}.
@since 4.00 *)
module type SeededS =
sig
type key
type !'a t
val create : ?random (* thwart tools/sync_stdlib_docs *) :bool ->
int -> 'a t
val clear : 'a t -> unit
val reset : 'a t -> unit
val copy : 'a t -> 'a t
val add : 'a t -> key -> 'a -> unit
val remove : 'a t -> key -> unit
val find : 'a t -> key -> 'a
val find_opt : 'a t -> key -> 'a option (** @since 4.05 *)
val find_all : 'a t -> key -> 'a list
val replace : 'a t -> key -> 'a -> unit
val mem : 'a t -> key -> bool
val iter : (key -> 'a -> unit) -> 'a t -> unit
val filter_map_inplace: (key -> 'a -> 'a option) -> 'a t ->
unit
(** @since 4.03 *)
val fold :
(key -> 'a -> 'acc -> 'acc) -> 'a t -> 'acc -> 'acc
val length : 'a t -> int
val stats: 'a t -> statistics
val to_seq : 'a t -> (key * 'a) Seq.t
(** @since 4.07 *)
val to_seq_keys : _ t -> key Seq.t
(** @since 4.07 *)
val to_seq_values : 'a t -> 'a Seq.t
(** @since 4.07 *)
val add_seq : 'a t -> (key * 'a) Seq.t -> unit
(** @since 4.07 *)
val replace_seq : 'a t -> (key * 'a) Seq.t -> unit
(** @since 4.07 *)
val of_seq : (key * 'a) Seq.t -> 'a t
(** @since 4.07 *)
end
(** The output signature of the functor {!MakeSeeded}.
@since 4.00 *)
module MakeSeeded (H : SeededHashedType) : SeededS with type key = H.t
(** Functor building an implementation of the hashtable structure.
The functor [Hashtbl.MakeSeeded] returns a structure containing
a type [key] of keys and a type ['a t] of hash tables
associating data of type ['a] to keys of type [key].
The operations perform similarly to those of the generic
interface, but use the seeded hashing and equality functions
specified in the functor argument [H] instead of generic
equality and hashing. The [create] operation of the
result structure supports the [~random] optional parameter
and returns randomized hash tables if [~random:true] is passed
or if randomization is globally on (see {!Hashtbl.randomize}).
@since 4.00 *)
(** {1 The polymorphic hash functions} *)
val hash : 'a -> int
(** [Hashtbl.hash x] associates a nonnegative integer to any value of
any type. It is guaranteed that
if [x = y] or [Stdlib.compare x y = 0], then [hash x = hash y].
Moreover, [hash] always terminates, even on cyclic structures. *)
val seeded_hash : int -> 'a -> int
(** A variant of {!hash} that is further parameterized by
an integer seed.
@since 4.00 *)
val hash_param : int -> int -> 'a -> int
(** [Hashtbl.hash_param meaningful total x] computes a hash value for [x],
with the same properties as for [hash]. The two extra integer
parameters [meaningful] and [total] give more precise control over
hashing. Hashing performs a breadth-first, left-to-right traversal
of the structure [x], stopping after [meaningful] meaningful nodes
were encountered, or [total] nodes (meaningful or not) were
encountered. If [total] as specified by the user exceeds a certain
value, currently 256, then it is capped to that value.
Meaningful nodes are: integers; floating-point
numbers; strings; characters; booleans; and constant
constructors. Larger values of [meaningful] and [total] means that
more nodes are taken into account to compute the final hash value,
and therefore collisions are less likely to happen. However,
hashing takes longer. The parameters [meaningful] and [total]
govern the tradeoff between accuracy and speed. As default
choices, {!hash} and {!seeded_hash} take
[meaningful = 10] and [total = 100]. *)
val seeded_hash_param : int -> int -> int -> 'a -> int
(** A variant of {!hash_param} that is further parameterized by
an integer seed. Usage:
[Hashtbl.seeded_hash_param meaningful total seed x].
@since 4.00 *)
(** {1:examples Examples}
{2 Basic Example}
{[
(* 0...99 *)
let seq = Seq.ints 0 |> Seq.take 100
(* build from Seq.t *)
# let tbl =
seq
|> Seq.map (fun x -> x, string_of_int x)
|> Hashtbl.of_seq
val tbl : (int, string) Hashtbl.t = <abstr>
# Hashtbl.length tbl
- : int = 100
# Hashtbl.find_opt tbl 32
- : string option = Some "32"
# Hashtbl.find_opt tbl 166
- : string option = None
# Hashtbl.replace tbl 166 "one six six"
- : unit = ()
# Hashtbl.find_opt tbl 166
- : string option = Some "one six six"
# Hashtbl.length tbl
- : int = 101
]}
{2 Counting Elements}
Given a sequence of elements (here, a {!Seq.t}), we want to count how many
times each distinct element occurs in the sequence. A simple way to do this,
assuming the elements are comparable and hashable, is to use a hash table
that maps elements to their number of occurrences.
Here we illustrate that principle using a sequence of (ascii) characters
(type [char]).
We use a custom [Char_tbl] specialized for [char].
{[
# module Char_tbl = Hashtbl.Make(struct
type t = char
let equal = Char.equal
let hash = Hashtbl.hash
end)
(* count distinct occurrences of chars in [seq] *)
# let count_chars (seq : char Seq.t) : _ list =
let counts = Char_tbl.create 16 in
Seq.iter
(fun c ->
let count_c =
Char_tbl.find_opt counts c
|> Option.value ~default:0
in
Char_tbl.replace counts c (count_c + 1))
seq;
(* turn into a list *)
Char_tbl.fold (fun c n l -> (c,n) :: l) counts []
|> List.sort (fun (c1,_)(c2,_) -> Char.compare c1 c2)
val count_chars : Char_tbl.key Seq.t -> (Char.t * int) list = <fun>
(* basic seq from a string *)
# let seq = String.to_seq "hello world, and all the camels in it!"
val seq : char Seq.t = <fun>
# count_chars seq
- : (Char.t * int) list =
[(' ', 7); ('!', 1); (',', 1); ('a', 3); ('c', 1); ('d', 2); ('e', 3);
('h', 2); ('i', 2); ('l', 6); ('m', 1); ('n', 2); ('o', 2); ('r', 1);
('s', 1); ('t', 2); ('w', 1)]
(* "abcabcabc..." *)
# let seq2 =
Seq.cycle (String.to_seq "abc") |> Seq.take 31
val seq2 : char Seq.t = <fun>
# String.of_seq seq2
- : String.t = "abcabcabcabcabcabcabcabcabcabca"
# count_chars seq2
- : (Char.t * int) list = [('a', 11); ('b', 10); ('c', 10)]
]}
*)