forked from ocaml/ocaml
-
Notifications
You must be signed in to change notification settings - Fork 0
/
map.ml
547 lines (476 loc) · 17.2 KB
/
map.ml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
(**************************************************************************)
(* *)
(* OCaml *)
(* *)
(* Xavier Leroy, projet Cristal, INRIA Rocquencourt *)
(* *)
(* Copyright 1996 Institut National de Recherche en Informatique et *)
(* en Automatique. *)
(* *)
(* All rights reserved. This file is distributed under the terms of *)
(* the GNU Lesser General Public License version 2.1, with the *)
(* special exception on linking described in the file LICENSE. *)
(* *)
(**************************************************************************)
module type OrderedType =
sig
type t
val compare: t -> t -> int
end
module type S =
sig
type key
type !+'a t
val empty: 'a t
val add: key -> 'a -> 'a t -> 'a t
val add_to_list: key -> 'a -> 'a list t -> 'a list t
val update: key -> ('a option -> 'a option) -> 'a t -> 'a t
val singleton: key -> 'a -> 'a t
val remove: key -> 'a t -> 'a t
val merge:
(key -> 'a option -> 'b option -> 'c option) ->
'a t -> 'b t -> 'c t
val union: (key -> 'a -> 'a -> 'a option) -> 'a t -> 'a t -> 'a t
val cardinal: 'a t -> int
val bindings: 'a t -> (key * 'a) list
val min_binding: 'a t -> (key * 'a)
val min_binding_opt: 'a t -> (key * 'a) option
val max_binding: 'a t -> (key * 'a)
val max_binding_opt: 'a t -> (key * 'a) option
val choose: 'a t -> (key * 'a)
val choose_opt: 'a t -> (key * 'a) option
val find: key -> 'a t -> 'a
val find_opt: key -> 'a t -> 'a option
val find_first: (key -> bool) -> 'a t -> key * 'a
val find_first_opt: (key -> bool) -> 'a t -> (key * 'a) option
val find_last: (key -> bool) -> 'a t -> key * 'a
val find_last_opt: (key -> bool) -> 'a t -> (key * 'a) option
val iter: (key -> 'a -> unit) -> 'a t -> unit
val fold: (key -> 'a -> 'b -> 'b) -> 'a t -> 'b -> 'b
val map: ('a -> 'b) -> 'a t -> 'b t
val mapi: (key -> 'a -> 'b) -> 'a t -> 'b t
val filter: (key -> 'a -> bool) -> 'a t -> 'a t
val filter_map: (key -> 'a -> 'b option) -> 'a t -> 'b t
val partition: (key -> 'a -> bool) -> 'a t -> 'a t * 'a t
val split: key -> 'a t -> 'a t * 'a option * 'a t
val is_empty: 'a t -> bool
val mem: key -> 'a t -> bool
val equal: ('a -> 'a -> bool) -> 'a t -> 'a t -> bool
val compare: ('a -> 'a -> int) -> 'a t -> 'a t -> int
val for_all: (key -> 'a -> bool) -> 'a t -> bool
val exists: (key -> 'a -> bool) -> 'a t -> bool
val to_list : 'a t -> (key * 'a) list
val of_list : (key * 'a) list -> 'a t
val to_seq : 'a t -> (key * 'a) Seq.t
val to_rev_seq : 'a t -> (key * 'a) Seq.t
val to_seq_from : key -> 'a t -> (key * 'a) Seq.t
val add_seq : (key * 'a) Seq.t -> 'a t -> 'a t
val of_seq : (key * 'a) Seq.t -> 'a t
end
module Make(Ord: OrderedType) = struct
type key = Ord.t
type 'a t =
Empty
| Node of {l:'a t; v:key; d:'a; r:'a t; h:int}
let height = function
Empty -> 0
| Node {h} -> h
let create l x d r =
let hl = height l and hr = height r in
Node{l; v=x; d; r; h=(if hl >= hr then hl + 1 else hr + 1)}
let singleton x d = Node{l=Empty; v=x; d; r=Empty; h=1}
let bal l x d r =
let hl = match l with Empty -> 0 | Node {h} -> h in
let hr = match r with Empty -> 0 | Node {h} -> h in
if hl > hr + 2 then begin
match l with
Empty -> invalid_arg "Map.bal"
| Node{l=ll; v=lv; d=ld; r=lr} ->
if height ll >= height lr then
create ll lv ld (create lr x d r)
else begin
match lr with
Empty -> invalid_arg "Map.bal"
| Node{l=lrl; v=lrv; d=lrd; r=lrr}->
create (create ll lv ld lrl) lrv lrd (create lrr x d r)
end
end else if hr > hl + 2 then begin
match r with
Empty -> invalid_arg "Map.bal"
| Node{l=rl; v=rv; d=rd; r=rr} ->
if height rr >= height rl then
create (create l x d rl) rv rd rr
else begin
match rl with
Empty -> invalid_arg "Map.bal"
| Node{l=rll; v=rlv; d=rld; r=rlr} ->
create (create l x d rll) rlv rld (create rlr rv rd rr)
end
end else
Node{l; v=x; d; r; h=(if hl >= hr then hl + 1 else hr + 1)}
let empty = Empty
let is_empty = function Empty -> true | _ -> false
let rec add x data = function
Empty ->
Node{l=Empty; v=x; d=data; r=Empty; h=1}
| Node {l; v; d; r; h} as m ->
let c = Ord.compare x v in
if c = 0 then
if d == data then m else Node{l; v=x; d=data; r; h}
else if c < 0 then
let ll = add x data l in
if l == ll then m else bal ll v d r
else
let rr = add x data r in
if r == rr then m else bal l v d rr
let rec find x = function
Empty ->
raise Not_found
| Node {l; v; d; r} ->
let c = Ord.compare x v in
if c = 0 then d
else find x (if c < 0 then l else r)
let rec find_first_aux v0 d0 f = function
Empty ->
(v0, d0)
| Node {l; v; d; r} ->
if f v then
find_first_aux v d f l
else
find_first_aux v0 d0 f r
let rec find_first f = function
Empty ->
raise Not_found
| Node {l; v; d; r} ->
if f v then
find_first_aux v d f l
else
find_first f r
let rec find_first_opt_aux v0 d0 f = function
Empty ->
Some (v0, d0)
| Node {l; v; d; r} ->
if f v then
find_first_opt_aux v d f l
else
find_first_opt_aux v0 d0 f r
let rec find_first_opt f = function
Empty ->
None
| Node {l; v; d; r} ->
if f v then
find_first_opt_aux v d f l
else
find_first_opt f r
let rec find_last_aux v0 d0 f = function
Empty ->
(v0, d0)
| Node {l; v; d; r} ->
if f v then
find_last_aux v d f r
else
find_last_aux v0 d0 f l
let rec find_last f = function
Empty ->
raise Not_found
| Node {l; v; d; r} ->
if f v then
find_last_aux v d f r
else
find_last f l
let rec find_last_opt_aux v0 d0 f = function
Empty ->
Some (v0, d0)
| Node {l; v; d; r} ->
if f v then
find_last_opt_aux v d f r
else
find_last_opt_aux v0 d0 f l
let rec find_last_opt f = function
Empty ->
None
| Node {l; v; d; r} ->
if f v then
find_last_opt_aux v d f r
else
find_last_opt f l
let rec find_opt x = function
Empty ->
None
| Node {l; v; d; r} ->
let c = Ord.compare x v in
if c = 0 then Some d
else find_opt x (if c < 0 then l else r)
let rec mem x = function
Empty ->
false
| Node {l; v; r} ->
let c = Ord.compare x v in
c = 0 || mem x (if c < 0 then l else r)
let rec min_binding = function
Empty -> raise Not_found
| Node {l=Empty; v; d} -> (v, d)
| Node {l} -> min_binding l
let rec min_binding_opt = function
Empty -> None
| Node {l=Empty; v; d} -> Some (v, d)
| Node {l}-> min_binding_opt l
let rec max_binding = function
Empty -> raise Not_found
| Node {v; d; r=Empty} -> (v, d)
| Node {r} -> max_binding r
let rec max_binding_opt = function
Empty -> None
| Node {v; d; r=Empty} -> Some (v, d)
| Node {r} -> max_binding_opt r
let rec remove_min_binding = function
Empty -> invalid_arg "Map.remove_min_elt"
| Node {l=Empty; r} -> r
| Node {l; v; d; r} -> bal (remove_min_binding l) v d r
let merge t1 t2 =
match (t1, t2) with
(Empty, t) -> t
| (t, Empty) -> t
| (_, _) ->
let (x, d) = min_binding t2 in
bal t1 x d (remove_min_binding t2)
let rec remove x = function
Empty ->
Empty
| (Node {l; v; d; r} as m) ->
let c = Ord.compare x v in
if c = 0 then merge l r
else if c < 0 then
let ll = remove x l in if l == ll then m else bal ll v d r
else
let rr = remove x r in if r == rr then m else bal l v d rr
let rec update x f = function
Empty ->
begin match f None with
| None -> Empty
| Some data -> Node{l=Empty; v=x; d=data; r=Empty; h=1}
end
| Node {l; v; d; r; h} as m ->
let c = Ord.compare x v in
if c = 0 then begin
match f (Some d) with
| None -> merge l r
| Some data ->
if d == data then m else Node{l; v=x; d=data; r; h}
end else if c < 0 then
let ll = update x f l in
if l == ll then m else bal ll v d r
else
let rr = update x f r in
if r == rr then m else bal l v d rr
let add_to_list x data m =
let add = function None -> Some [data] | Some l -> Some (data :: l) in
update x add m
let rec iter f = function
Empty -> ()
| Node {l; v; d; r} ->
iter f l; f v d; iter f r
let rec map f = function
Empty ->
Empty
| Node {l; v; d; r; h} ->
let l' = map f l in
let d' = f d in
let r' = map f r in
Node{l=l'; v; d=d'; r=r'; h}
let rec mapi f = function
Empty ->
Empty
| Node {l; v; d; r; h} ->
let l' = mapi f l in
let d' = f v d in
let r' = mapi f r in
Node{l=l'; v; d=d'; r=r'; h}
let rec fold f m accu =
match m with
Empty -> accu
| Node {l; v; d; r} ->
fold f r (f v d (fold f l accu))
let rec for_all p = function
Empty -> true
| Node {l; v; d; r} -> p v d && for_all p l && for_all p r
let rec exists p = function
Empty -> false
| Node {l; v; d; r} -> p v d || exists p l || exists p r
(* Beware: those two functions assume that the added k is *strictly*
smaller (or bigger) than all the present keys in the tree; it
does not test for equality with the current min (or max) key.
Indeed, they are only used during the "join" operation which
respects this precondition.
*)
let rec add_min_binding k x = function
| Empty -> singleton k x
| Node {l; v; d; r} ->
bal (add_min_binding k x l) v d r
let rec add_max_binding k x = function
| Empty -> singleton k x
| Node {l; v; d; r} ->
bal l v d (add_max_binding k x r)
(* Same as create and bal, but no assumptions are made on the
relative heights of l and r. *)
let rec join l v d r =
match (l, r) with
(Empty, _) -> add_min_binding v d r
| (_, Empty) -> add_max_binding v d l
| (Node{l=ll; v=lv; d=ld; r=lr; h=lh},
Node{l=rl; v=rv; d=rd; r=rr; h=rh}) ->
if lh > rh + 2 then bal ll lv ld (join lr v d r) else
if rh > lh + 2 then bal (join l v d rl) rv rd rr else
create l v d r
(* Merge two trees l and r into one.
All elements of l must precede the elements of r.
No assumption on the heights of l and r. *)
let concat t1 t2 =
match (t1, t2) with
(Empty, t) -> t
| (t, Empty) -> t
| (_, _) ->
let (x, d) = min_binding t2 in
join t1 x d (remove_min_binding t2)
let concat_or_join t1 v d t2 =
match d with
| Some d -> join t1 v d t2
| None -> concat t1 t2
let rec split x = function
Empty ->
(Empty, None, Empty)
| Node {l; v; d; r} ->
let c = Ord.compare x v in
if c = 0 then (l, Some d, r)
else if c < 0 then
let (ll, pres, rl) = split x l in (ll, pres, join rl v d r)
else
let (lr, pres, rr) = split x r in (join l v d lr, pres, rr)
let rec merge f s1 s2 =
match (s1, s2) with
(Empty, Empty) -> Empty
| (Node {l=l1; v=v1; d=d1; r=r1; h=h1}, _) when h1 >= height s2 ->
let (l2, d2, r2) = split v1 s2 in
concat_or_join (merge f l1 l2) v1 (f v1 (Some d1) d2) (merge f r1 r2)
| (_, Node {l=l2; v=v2; d=d2; r=r2}) ->
let (l1, d1, r1) = split v2 s1 in
concat_or_join (merge f l1 l2) v2 (f v2 d1 (Some d2)) (merge f r1 r2)
| _ ->
assert false
let rec union f s1 s2 =
match (s1, s2) with
| (Empty, s) | (s, Empty) -> s
| (Node {l=l1; v=v1; d=d1; r=r1; h=h1},
Node {l=l2; v=v2; d=d2; r=r2; h=h2}) ->
if h1 >= h2 then
let (l2, d2, r2) = split v1 s2 in
let l = union f l1 l2 and r = union f r1 r2 in
match d2 with
| None -> join l v1 d1 r
| Some d2 -> concat_or_join l v1 (f v1 d1 d2) r
else
let (l1, d1, r1) = split v2 s1 in
let l = union f l1 l2 and r = union f r1 r2 in
match d1 with
| None -> join l v2 d2 r
| Some d1 -> concat_or_join l v2 (f v2 d1 d2) r
let rec filter p = function
Empty -> Empty
| Node {l; v; d; r} as m ->
(* call [p] in the expected left-to-right order *)
let l' = filter p l in
let pvd = p v d in
let r' = filter p r in
if pvd then if l==l' && r==r' then m else join l' v d r'
else concat l' r'
let rec filter_map f = function
Empty -> Empty
| Node {l; v; d; r} ->
(* call [f] in the expected left-to-right order *)
let l' = filter_map f l in
let fvd = f v d in
let r' = filter_map f r in
begin match fvd with
| Some d' -> join l' v d' r'
| None -> concat l' r'
end
let rec partition p = function
Empty -> (Empty, Empty)
| Node {l; v; d; r} ->
(* call [p] in the expected left-to-right order *)
let (lt, lf) = partition p l in
let pvd = p v d in
let (rt, rf) = partition p r in
if pvd
then (join lt v d rt, concat lf rf)
else (concat lt rt, join lf v d rf)
type 'a enumeration = End | More of key * 'a * 'a t * 'a enumeration
let rec cons_enum m e =
match m with
Empty -> e
| Node {l; v; d; r} -> cons_enum l (More(v, d, r, e))
let compare cmp m1 m2 =
let rec compare_aux e1 e2 =
match (e1, e2) with
(End, End) -> 0
| (End, _) -> -1
| (_, End) -> 1
| (More(v1, d1, r1, e1), More(v2, d2, r2, e2)) ->
let c = Ord.compare v1 v2 in
if c <> 0 then c else
let c = cmp d1 d2 in
if c <> 0 then c else
compare_aux (cons_enum r1 e1) (cons_enum r2 e2)
in compare_aux (cons_enum m1 End) (cons_enum m2 End)
let equal cmp m1 m2 =
let rec equal_aux e1 e2 =
match (e1, e2) with
(End, End) -> true
| (End, _) -> false
| (_, End) -> false
| (More(v1, d1, r1, e1), More(v2, d2, r2, e2)) ->
Ord.compare v1 v2 = 0 && cmp d1 d2 &&
equal_aux (cons_enum r1 e1) (cons_enum r2 e2)
in equal_aux (cons_enum m1 End) (cons_enum m2 End)
let rec cardinal = function
Empty -> 0
| Node {l; r} -> cardinal l + 1 + cardinal r
let rec bindings_aux accu = function
Empty -> accu
| Node {l; v; d; r} -> bindings_aux ((v, d) :: bindings_aux accu r) l
let bindings s =
bindings_aux [] s
let choose = min_binding
let choose_opt = min_binding_opt
let to_list = bindings
let of_list bs = List.fold_left (fun m (k, v) -> add k v m) empty bs
let add_seq i m =
Seq.fold_left (fun m (k,v) -> add k v m) m i
let of_seq i = add_seq i empty
let rec seq_of_enum_ c () = match c with
| End -> Seq.Nil
| More (k,v,t,rest) -> Seq.Cons ((k,v), seq_of_enum_ (cons_enum t rest))
let to_seq m =
seq_of_enum_ (cons_enum m End)
let rec snoc_enum s e =
match s with
Empty -> e
| Node{l; v; d; r} -> snoc_enum r (More(v, d, l, e))
let rec rev_seq_of_enum_ c () = match c with
| End -> Seq.Nil
| More (k,v,t,rest) ->
Seq.Cons ((k,v), rev_seq_of_enum_ (snoc_enum t rest))
let to_rev_seq c =
rev_seq_of_enum_ (snoc_enum c End)
let to_seq_from low m =
let rec aux low m c = match m with
| Empty -> c
| Node {l; v; d; r; _} ->
begin match Ord.compare v low with
| 0 -> More (v, d, r, c)
| n when n<0 -> aux low r c
| _ -> aux low l (More (v, d, r, c))
end
in
seq_of_enum_ (aux low m End)
end