Skip to content

Latest commit

 

History

History
179 lines (130 loc) · 6.83 KB

README.md

File metadata and controls

179 lines (130 loc) · 6.83 KB

minichatgpt

🔥 To Train ChatGPT In 5 Minutes with ColossalAI

Install

pip install minichatgpt

Usage

The main entrypoint is Trainer. We only support PPO trainer now. We support many training strategies:

  • NaiveStrategy: simplest strategy. Train on single GPU.
  • DDPStrategy: use torch.nn.parallel.DistributedDataParallel. Train on multi GPUs.
  • ColossalAIStrategy: use Gemini and Zero of ColossalAI. It eliminates model duplication on each GPU and supports offload. It's very useful when training large models on multi GPUs.

Simplest usage:

from minichatgpt.trainer import PPOTrainer
from minichatgpt.trainer.strategies import ColossalAIStrategy
from minichatgpt.nn import GPTActor, GPTCritic, RewardModel
from copy import deepcopy
from colossalai.nn.optimizer import HybridAdam

strategy = ColossalAIStrategy()

with strategy.model_init_context():
  # init your model here
  # load pretrained gpt2
  actor = GPTActor(pretrained='gpt2')
  critic = GPTCritic()
  initial_model = deepcopy(actor).cuda()
  reward_model = RewardModel(deepcopy(critic.model), deepcopy(critic.value_head)).cuda()

actor_optim = HybridAdam(actor.parameters(), lr=5e-6)
critic_optim = HybridAdam(critic.parameters(), lr=5e-6)

# prepare models and optimizers
(actor, actor_optim), (critic, critic_optim), reward_model, initial_model = strategy.prepare(
        (actor, actor_optim), (critic, critic_optim), reward_model, initial_model)

# load saved model checkpoint after preparing
strategy.load_model(actor, 'actor_checkpoint.pt', strict=False)
# load saved optimizer checkpoint after preparing
strategy.load_optimizer(actor_optim, 'actor_optim_checkpoint.pt')

trainer = PPOTrainer(strategy,
                     actor,
                     critic,
                     reward_model,
                     initial_model,
                     actor_optim,
                     critic_optim,
                     ...)

trainer.fit(dataset, ...)

# save model checkpoint after fitting on only rank0
strategy.save_model(actor, 'actor_checkpoint.pt', only_rank0=True)
# save optimizer checkpoint on all ranks
strategy.save_optimizer(actor_optim, 'actor_optim_checkpoint.pt', only_rank0=False)

For more details, see examples/.

We also support training reward model with true-world data. See examples/train_reward_model.py.

FAQ

How to save/load checkpoint

To load pretrained model, you can simply use huggingface pretrained models:

# load OPT-350m pretrained model
actor = OPTActor(pretrained='facebook/opt-350m')

To save model checkpoint:

# save model checkpoint on only rank0
strategy.save_model(actor, 'actor_checkpoint.pt', only_rank0=True)

This function must be called after strategy.prepare().

For DDP strategy, model weights are replicated on all ranks. And for ColossalAI strategy, model weights may be sharded, but all-gather will be applied before returning state dict. You can set only_rank0=True for both of them, which only saves checkpoint on rank0, to save disk space usage. The checkpoint is float32.

To save optimizer checkpoint:

# save optimizer checkpoint on all ranks
strategy.save_optimizer(actor_optim, 'actor_optim_checkpoint.pt', only_rank0=False)

For DDP strategy, optimizer states are replicated on all ranks. You can set only_rank0=True. But for ColossalAI strategy, optimizer states are sharded over all ranks, and no all-gather will be applied. So for ColossalAI strategy, you can only set only_rank0=False. That is to say, each rank will save a cehckpoint. When loading, each rank should load the corresponding part.

Note that different stategy may have different shapes of optimizer checkpoint.

To load model checkpoint:

# load saved model checkpoint after preparing
strategy.load_model(actor, 'actor_checkpoint.pt', strict=False)

To load optimizer checkpoint:

# load saved optimizer checkpoint after preparing
strategy.load_optimizer(actor_optim, 'actor_optim_checkpoint.pt')

Todo

  • implement PPO fine-tuning
  • implement training reward model
  • support LoRA
  • implement PPO-ptx fine-tuning
  • integrate with Ray
  • support more RL paradigms, like Implicit Language Q-Learning (ILQL)

Invitation to open-source contribution

Referring to the successful attempts of BLOOM and Stable Diffusion, any and all developers and partners with computing powers, datasets, models are welcome to join and build an ecosystem with Colossal-AI, making efforts towards the era of big AI models from the starting point of replicating minichatgpt!

You may contact us or participate in the following ways:

  1. Posting an issue or submitting a PR on GitHub
  2. Join the Colossal-AI community on Slack, and WeChat to share your ideas.
  3. Check out and fill in the cooperation proposal
  4. Send your proposal to email [email protected]

Thanks so much to all of our amazing contributors!

Quick Preview

  • Up to 7.73 times faster for single server training and 1.42 times faster for single-GPU inference

  • Up to 10.3x growth in model capacity on one GPU
  • A mini demo training process requires only 1.62GB of GPU memory (any consumer-grade GPU)

  • Increase the capacity of the fine-tuning model by up to 3.7 times on a single GPU
  • Keep in a sufficiently high running speed

Citations

@article{Hu2021LoRALA,
    title   = {LoRA: Low-Rank Adaptation of Large Language Models},
    author  = {Edward J. Hu and Yelong Shen and Phillip Wallis and Zeyuan Allen-Zhu and Yuanzhi Li and Shean Wang and Weizhu Chen},
    journal = {ArXiv},
    year    = {2021},
    volume  = {abs/2106.09685}
}

@article{ouyang2022training,
  title={Training language models to follow instructions with human feedback},
  author={Ouyang, Long and Wu, Jeff and Jiang, Xu and Almeida, Diogo and Wainwright, Carroll L and Mishkin, Pamela and Zhang, Chong and Agarwal, Sandhini and Slama, Katarina and Ray, Alex and others},
  journal={arXiv preprint arXiv:2203.02155},
  year={2022}
}