forked from clementchadebec/benchmark_VAE
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest_VQVAE.py
755 lines (562 loc) · 22.7 KB
/
test_VQVAE.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
import os
from copy import deepcopy
import pytest
import torch
from pydantic import ValidationError
from pythae.customexception import BadInheritanceError
from pythae.models import VQVAE, AutoModel, VQVAEConfig
from pythae.models.base.base_utils import ModelOutput
from pythae.models.vq_vae.vq_vae_utils import Quantizer, QuantizerEMA
from pythae.pipelines import GenerationPipeline, TrainingPipeline
from pythae.samplers import PixelCNNSamplerConfig
from pythae.trainers import BaseTrainer, BaseTrainerConfig
from tests.data.custom_architectures import (
Decoder_AE_Conv,
Encoder_AE_Conv,
NetBadInheritance,
)
PATH = os.path.dirname(os.path.abspath(__file__))
@pytest.fixture(params=[VQVAEConfig(), VQVAEConfig(latent_dim=4)])
def model_configs_no_input_dim(request):
return request.param
@pytest.fixture(
params=[
VQVAEConfig(
input_dim=(1, 28, 28), latent_dim=16, num_embeddings=10
), # ! Needs squared latent_dim !
VQVAEConfig(
input_dim=(1, 28, 28),
commitment_loss_factor=0.02,
quantization_loss_factor=0.18,
latent_dim=16,
use_ema=True,
decay=0.001,
),
]
)
def model_configs(request):
return request.param
@pytest.fixture
def custom_encoder(model_configs):
return Encoder_AE_Conv(model_configs)
@pytest.fixture
def custom_decoder(model_configs):
return Decoder_AE_Conv(model_configs)
class Test_Model_Building:
@pytest.fixture()
def bad_net(self):
return NetBadInheritance()
def test_build_model(self, model_configs):
model = VQVAE(model_configs)
assert all(
[
model.input_dim == model_configs.input_dim,
model.latent_dim == model_configs.latent_dim,
]
)
with pytest.raises(ValidationError):
VQVAEConfig(decay=10, use_ema=True)
def build_quantizer(self, model_configs):
model = VQVAE(model_configs)
if model.use_ema:
assert isinstance(model.quantizer, QuantizerEMA)
else:
assert isinstance(model.quantizer, Quantizer)
def test_raises_bad_inheritance(self, model_configs, bad_net):
with pytest.raises(BadInheritanceError):
model = VQVAE(model_configs, encoder=bad_net)
with pytest.raises(BadInheritanceError):
model = VQVAE(model_configs, decoder=bad_net)
def test_raises_no_input_dim(
self, model_configs_no_input_dim, custom_encoder, custom_decoder
):
with pytest.raises(AttributeError):
model = VQVAE(model_configs_no_input_dim)
with pytest.raises(AttributeError):
model = VQVAE(model_configs_no_input_dim, encoder=custom_encoder)
with pytest.raises(AttributeError):
model = VQVAE(model_configs_no_input_dim, decoder=custom_decoder)
def test_build_custom_arch(self, model_configs, custom_encoder, custom_decoder):
model = VQVAE(model_configs, encoder=custom_encoder, decoder=custom_decoder)
assert model.encoder == custom_encoder
assert not model.model_config.uses_default_encoder
assert model.decoder == custom_decoder
assert not model.model_config.uses_default_decoder
model = VQVAE(model_configs, encoder=custom_encoder)
assert model.encoder == custom_encoder
assert not model.model_config.uses_default_encoder
assert model.model_config.uses_default_decoder
model = VQVAE(model_configs, decoder=custom_decoder)
assert model.model_config.uses_default_encoder
assert model.decoder == custom_decoder
assert not model.model_config.uses_default_decoder
class Test_Model_Saving:
def test_default_model_saving(self, tmpdir, model_configs):
tmpdir.mkdir("dummy_folder")
dir_path = dir_path = os.path.join(tmpdir, "dummy_folder")
model = VQVAE(model_configs)
model.state_dict()["encoder.layers.0.0.weight"][0] = 0
model.save(dir_path=dir_path)
assert set(os.listdir(dir_path)) == set(
["model_config.json", "model.pt", "environment.json"]
)
# reload model
model_rec = AutoModel.load_from_folder(dir_path)
# check configs are the same
assert model_rec.model_config.__dict__ == model.model_config.__dict__
assert all(
[
torch.equal(model_rec.state_dict()[key], model.state_dict()[key])
for key in model.state_dict().keys()
]
)
def test_custom_encoder_model_saving(self, tmpdir, model_configs, custom_encoder):
tmpdir.mkdir("dummy_folder")
dir_path = dir_path = os.path.join(tmpdir, "dummy_folder")
model = VQVAE(model_configs, encoder=custom_encoder)
model.state_dict()["encoder.layers.0.0.weight"][0] = 0
model.save(dir_path=dir_path)
assert set(os.listdir(dir_path)) == set(
["model_config.json", "model.pt", "encoder.pkl", "environment.json"]
)
# reload model
model_rec = AutoModel.load_from_folder(dir_path)
# check configs are the same
assert model_rec.model_config.__dict__ == model.model_config.__dict__
assert all(
[
torch.equal(model_rec.state_dict()[key], model.state_dict()[key])
for key in model.state_dict().keys()
]
)
def test_custom_decoder_model_saving(self, tmpdir, model_configs, custom_decoder):
tmpdir.mkdir("dummy_folder")
dir_path = dir_path = os.path.join(tmpdir, "dummy_folder")
model = VQVAE(model_configs, decoder=custom_decoder)
model.state_dict()["encoder.layers.0.0.weight"][0] = 0
model.save(dir_path=dir_path)
assert set(os.listdir(dir_path)) == set(
["model_config.json", "model.pt", "decoder.pkl", "environment.json"]
)
# reload model
model_rec = AutoModel.load_from_folder(dir_path)
# check configs are the same
assert model_rec.model_config.__dict__ == model.model_config.__dict__
assert all(
[
torch.equal(model_rec.state_dict()[key], model.state_dict()[key])
for key in model.state_dict().keys()
]
)
def test_full_custom_model_saving(
self, tmpdir, model_configs, custom_encoder, custom_decoder
):
tmpdir.mkdir("dummy_folder")
dir_path = dir_path = os.path.join(tmpdir, "dummy_folder")
model = VQVAE(model_configs, encoder=custom_encoder, decoder=custom_decoder)
model.state_dict()["encoder.layers.0.0.weight"][0] = 0
model.save(dir_path=dir_path)
assert set(os.listdir(dir_path)) == set(
[
"model_config.json",
"model.pt",
"encoder.pkl",
"decoder.pkl",
"environment.json",
]
)
# reload model
model_rec = AutoModel.load_from_folder(dir_path)
# check configs are the same
assert model_rec.model_config.__dict__ == model.model_config.__dict__
assert all(
[
torch.equal(model_rec.state_dict()[key], model.state_dict()[key])
for key in model.state_dict().keys()
]
)
def test_raises_missing_files(
self, tmpdir, model_configs, custom_encoder, custom_decoder
):
tmpdir.mkdir("dummy_folder")
dir_path = dir_path = os.path.join(tmpdir, "dummy_folder")
model = VQVAE(model_configs, encoder=custom_encoder, decoder=custom_decoder)
model.state_dict()["encoder.layers.0.0.weight"][0] = 0
model.save(dir_path=dir_path)
os.remove(os.path.join(dir_path, "decoder.pkl"))
# check raises decoder.pkl is missing
with pytest.raises(FileNotFoundError):
model_rec = AutoModel.load_from_folder(dir_path)
os.remove(os.path.join(dir_path, "encoder.pkl"))
# check raises encoder.pkl is missing
with pytest.raises(FileNotFoundError):
model_rec = AutoModel.load_from_folder(dir_path)
os.remove(os.path.join(dir_path, "model.pt"))
# check raises encoder.pkl is missing
with pytest.raises(FileNotFoundError):
model_rec = AutoModel.load_from_folder(dir_path)
os.remove(os.path.join(dir_path, "model_config.json"))
# check raises encoder.pkl is missing
with pytest.raises(FileNotFoundError):
model_rec = AutoModel.load_from_folder(dir_path)
class Test_Model_forward:
@pytest.fixture
def demo_data(self):
data = torch.load(os.path.join(PATH, "data/mnist_clean_train_dataset_sample"))[
:
]
return data # This is an extract of 3 data from MNIST (unnormalized) used to test custom architecture
@pytest.fixture
def vae(self, model_configs, demo_data):
model_configs.input_dim = tuple(demo_data["data"][0].shape)
return VQVAE(model_configs)
def test_model_train_output(self, vae, demo_data):
vae.train()
out = vae(demo_data)
assert isinstance(out, ModelOutput)
assert set(
["loss", "recon_loss", "vq_loss", "recon_x", "z", "quantized_indices"]
) == set(out.keys())
assert out.z.shape[0] == demo_data["data"].shape[0]
assert out.recon_x.shape == demo_data["data"].shape
class Test_Model_interpolate:
@pytest.fixture(
params=[
torch.rand(3, 2, 3, 1),
torch.rand(3, 2, 2),
torch.load(os.path.join(PATH, "data/mnist_clean_train_dataset_sample"))[:][
"data"
],
]
)
def demo_data(self, request):
return request.param
@pytest.fixture()
def granularity(self):
return int(torch.randint(1, 10, (1,)))
@pytest.fixture
def ae(self, model_configs, demo_data):
model_configs.input_dim = tuple(demo_data[0].shape)
return VQVAE(model_configs)
def test_interpolate(self, ae, demo_data, granularity):
with pytest.raises(AssertionError):
ae.interpolate(demo_data, demo_data[1:], granularity)
interp = ae.interpolate(demo_data, demo_data, granularity)
assert tuple(interp.shape) == (
demo_data.shape[0],
granularity,
) + (demo_data.shape[1:])
class Test_Model_reconstruct:
@pytest.fixture(
params=[
torch.rand(3, 2, 3, 1),
torch.rand(3, 2, 2),
torch.load(os.path.join(PATH, "data/mnist_clean_train_dataset_sample"))[:][
"data"
],
]
)
def demo_data(self, request):
return request.param
@pytest.fixture
def ae(self, model_configs, demo_data):
model_configs.input_dim = tuple(demo_data[0].shape)
return VQVAE(model_configs)
def test_reconstruct(self, ae, demo_data):
recon = ae.reconstruct(demo_data)
assert tuple(recon.shape) == demo_data.shape
@pytest.mark.slow
class Test_VQVAETraining:
@pytest.fixture
def train_dataset(self):
return torch.load(os.path.join(PATH, "data/mnist_clean_train_dataset_sample"))
@pytest.fixture(
params=[BaseTrainerConfig(num_epochs=3, steps_saving=2, learning_rate=1e-5)]
)
def training_configs(self, tmpdir, request):
tmpdir.mkdir("dummy_folder")
dir_path = os.path.join(tmpdir, "dummy_folder")
request.param.output_dir = dir_path
return request.param
@pytest.fixture(
params=[
torch.rand(1),
torch.rand(1),
torch.rand(1),
torch.rand(1),
torch.rand(1),
]
)
def vae(self, model_configs, custom_encoder, custom_decoder, request):
# randomized
alpha = request.param
if alpha < 0.25:
model = VQVAE(model_configs)
elif 0.25 <= alpha < 0.5:
model = VQVAE(model_configs, encoder=custom_encoder)
elif 0.5 <= alpha < 0.75:
model = VQVAE(model_configs, decoder=custom_decoder)
else:
model = VQVAE(model_configs, encoder=custom_encoder, decoder=custom_decoder)
return model
@pytest.fixture
def trainer(self, vae, train_dataset, training_configs):
trainer = BaseTrainer(
model=vae,
train_dataset=train_dataset,
eval_dataset=train_dataset,
training_config=training_configs,
)
trainer.prepare_training()
return trainer
def test_vae_train_step(self, trainer):
start_model_state_dict = deepcopy(trainer.model.state_dict())
step_1_loss = trainer.train_step(epoch=1)
step_1_model_state_dict = deepcopy(trainer.model.state_dict())
# check that weights were updated
assert not all(
[
torch.equal(start_model_state_dict[key], step_1_model_state_dict[key])
for key in start_model_state_dict.keys()
]
)
def test_vae_eval_step(self, trainer):
start_model_state_dict = deepcopy(trainer.model.state_dict())
step_1_loss = trainer.eval_step(epoch=1)
step_1_model_state_dict = deepcopy(trainer.model.state_dict())
# check that weights were not updated
assert all(
[
torch.equal(start_model_state_dict[key], step_1_model_state_dict[key])
for key in start_model_state_dict.keys()
]
)
def test_vae_predict_step(self, trainer, train_dataset):
start_model_state_dict = deepcopy(trainer.model.state_dict())
inputs, recon, generated = trainer.predict(trainer.model)
step_1_model_state_dict = deepcopy(trainer.model.state_dict())
# check that weights were not updated
assert all(
[
torch.equal(start_model_state_dict[key], step_1_model_state_dict[key])
for key in start_model_state_dict.keys()
]
)
assert inputs.cpu() in train_dataset.data
assert recon.shape == inputs.shape
assert generated.shape == inputs.shape
def test_vae_main_train_loop(self, trainer):
start_model_state_dict = deepcopy(trainer.model.state_dict())
trainer.train()
step_1_model_state_dict = deepcopy(trainer.model.state_dict())
# check that weights were updated
assert not all(
[
torch.equal(start_model_state_dict[key], step_1_model_state_dict[key])
for key in start_model_state_dict.keys()
]
)
def test_checkpoint_saving(self, vae, trainer, training_configs):
dir_path = training_configs.output_dir
# Make a training step
step_1_loss = trainer.train_step(epoch=1)
model = deepcopy(trainer.model)
optimizer = deepcopy(trainer.optimizer)
trainer.save_checkpoint(dir_path=dir_path, epoch=0, model=model)
checkpoint_dir = os.path.join(dir_path, "checkpoint_epoch_0")
assert os.path.isdir(checkpoint_dir)
files_list = os.listdir(checkpoint_dir)
assert set(["model.pt", "optimizer.pt", "training_config.json"]).issubset(
set(files_list)
)
# check pickled custom decoder
if not vae.model_config.uses_default_decoder:
assert "decoder.pkl" in files_list
else:
assert not "decoder.pkl" in files_list
# check pickled custom encoder
if not vae.model_config.uses_default_encoder:
assert "encoder.pkl" in files_list
else:
assert not "encoder.pkl" in files_list
model_rec_state_dict = torch.load(os.path.join(checkpoint_dir, "model.pt"))[
"model_state_dict"
]
assert all(
[
torch.equal(
model_rec_state_dict[key].cpu(), model.state_dict()[key].cpu()
)
for key in model.state_dict().keys()
]
)
# check reload full model
model_rec = AutoModel.load_from_folder(os.path.join(checkpoint_dir))
assert all(
[
torch.equal(
model_rec.state_dict()[key].cpu(), model.state_dict()[key].cpu()
)
for key in model.state_dict().keys()
]
)
assert type(model_rec.encoder.cpu()) == type(model.encoder.cpu())
assert type(model_rec.decoder.cpu()) == type(model.decoder.cpu())
optim_rec_state_dict = torch.load(os.path.join(checkpoint_dir, "optimizer.pt"))
assert all(
[
dict_rec == dict_optimizer
for (dict_rec, dict_optimizer) in zip(
optim_rec_state_dict["param_groups"],
optimizer.state_dict()["param_groups"],
)
]
)
assert all(
[
dict_rec == dict_optimizer
for (dict_rec, dict_optimizer) in zip(
optim_rec_state_dict["state"], optimizer.state_dict()["state"]
)
]
)
def test_checkpoint_saving_during_training(self, vae, trainer, training_configs):
#
target_saving_epoch = training_configs.steps_saving
dir_path = training_configs.output_dir
model = deepcopy(trainer.model)
trainer.train()
training_dir = os.path.join(
dir_path, f"VQVAE_training_{trainer._training_signature}"
)
assert os.path.isdir(training_dir)
checkpoint_dir = os.path.join(
training_dir, f"checkpoint_epoch_{target_saving_epoch}"
)
assert os.path.isdir(checkpoint_dir)
files_list = os.listdir(checkpoint_dir)
# check files
assert set(["model.pt", "optimizer.pt", "training_config.json"]).issubset(
set(files_list)
)
# check pickled custom decoder
if not vae.model_config.uses_default_decoder:
assert "decoder.pkl" in files_list
else:
assert not "decoder.pkl" in files_list
# check pickled custom encoder
if not vae.model_config.uses_default_encoder:
assert "encoder.pkl" in files_list
else:
assert not "encoder.pkl" in files_list
model_rec_state_dict = torch.load(os.path.join(checkpoint_dir, "model.pt"))[
"model_state_dict"
]
assert not all(
[
torch.equal(model_rec_state_dict[key], model.state_dict()[key])
for key in model.state_dict().keys()
]
)
def test_final_model_saving(self, vae, trainer, training_configs):
dir_path = training_configs.output_dir
trainer.train()
model = deepcopy(trainer._best_model)
training_dir = os.path.join(
dir_path, f"VQVAE_training_{trainer._training_signature}"
)
assert os.path.isdir(training_dir)
final_dir = os.path.join(training_dir, f"final_model")
assert os.path.isdir(final_dir)
files_list = os.listdir(final_dir)
assert set(["model.pt", "model_config.json", "training_config.json"]).issubset(
set(files_list)
)
# check pickled custom decoder
if not vae.model_config.uses_default_decoder:
assert "decoder.pkl" in files_list
else:
assert not "decoder.pkl" in files_list
# check pickled custom encoder
if not vae.model_config.uses_default_encoder:
assert "encoder.pkl" in files_list
else:
assert not "encoder.pkl" in files_list
# check reload full model
model_rec = AutoModel.load_from_folder(os.path.join(final_dir))
assert all(
[
torch.equal(
model_rec.state_dict()[key].cpu(), model.state_dict()[key].cpu()
)
for key in model.state_dict().keys()
]
)
assert type(model_rec.encoder.cpu()) == type(model.encoder.cpu())
assert type(model_rec.decoder.cpu()) == type(model.decoder.cpu())
def test_vae_training_pipeline(self, vae, train_dataset, training_configs):
dir_path = training_configs.output_dir
# build pipeline
pipeline = TrainingPipeline(model=vae, training_config=training_configs)
# Launch Pipeline
pipeline(
train_data=train_dataset.data, # gives tensor to pipeline
eval_data=train_dataset.data, # gives tensor to pipeline
)
model = deepcopy(pipeline.trainer._best_model)
training_dir = os.path.join(
dir_path, f"VQVAE_training_{pipeline.trainer._training_signature}"
)
assert os.path.isdir(training_dir)
final_dir = os.path.join(training_dir, f"final_model")
assert os.path.isdir(final_dir)
files_list = os.listdir(final_dir)
assert set(["model.pt", "model_config.json", "training_config.json"]).issubset(
set(files_list)
)
# check pickled custom decoder
if not vae.model_config.uses_default_decoder:
assert "decoder.pkl" in files_list
else:
assert not "decoder.pkl" in files_list
# check pickled custom encoder
if not vae.model_config.uses_default_encoder:
assert "encoder.pkl" in files_list
else:
assert not "encoder.pkl" in files_list
# check reload full model
model_rec = AutoModel.load_from_folder(os.path.join(final_dir))
assert all(
[
torch.equal(
model_rec.state_dict()[key].cpu(), model.state_dict()[key].cpu()
)
for key in model.state_dict().keys()
]
)
assert type(model_rec.encoder.cpu()) == type(model.encoder.cpu())
assert type(model_rec.decoder.cpu()) == type(model.decoder.cpu())
class Test_VQVAE_Generation:
@pytest.fixture
def train_data(self):
return torch.load(
os.path.join(PATH, "data/mnist_clean_train_dataset_sample")
).data
@pytest.fixture()
def ae_model(self):
return VQVAE(VQVAEConfig(input_dim=(1, 28, 28), latent_dim=4))
@pytest.fixture(params=[PixelCNNSamplerConfig()])
def sampler_configs(self, request):
return request.param
def test_fits_in_generation_pipeline(self, ae_model, sampler_configs, train_data):
pipeline = GenerationPipeline(model=ae_model, sampler_config=sampler_configs)
gen_data = pipeline(
num_samples=11,
batch_size=7,
output_dir=None,
return_gen=True,
train_data=train_data,
eval_data=train_data,
training_config=BaseTrainerConfig(num_epochs=1),
)
assert gen_data.shape[0] == 11