-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathmain.py
58 lines (44 loc) · 1.49 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
import os
import random
import subprocess
import ray
from ray import tune
from safe_grid_agents.parsing import prepare_parser
from train import train
from tune_config import TUNE_KWARGS, tune_config
parser = prepare_parser()
args = parser.parse_args()
if args.seed is None:
args.seed = random.randrange(500)
if args.disable_cuda:
args.device = "cpu"
args.commit_id = (
subprocess.check_output(["git", "rev-parse", "--short", "HEAD"])
.decode("utf8")
.strip()
)
######## Logging into TensorboardX ########
# If `args.log_dir` is None, we attempt a default unique up to env, agent, cheating, and seed combinations.
if args.log_dir is None:
cheating = "baseline" if args.cheat else "corrupt"
args.log_dir = os.path.join(
"runs", args.env_alias, args.agent_alias, cheating, str(args.seed)
)
if not os.path.exists(args.log_dir):
os.makedirs(args.log_dir, exist_ok=True)
if args.tune is not None:
ray.init()
config = tune_config(args)
# This lets us use argparse on top of ray tune while conforming
# to Tune's requirement that the train function take exactly 2
# arguments.
tune.register_trainable(
"train_curried_fn", lambda config, reporter: train(args, config, reporter)
)
# TODO(alok) Integrate Tune reporter with tensorboardX?
experiment_spec = tune.Experiment(
name="CRMDP", run="train_curried_fn", stop={}, config=config, **TUNE_KWARGS
)
tune.run_experiments(experiments=experiment_spec)
else:
train(args)