-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
248 lines (188 loc) · 9.39 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
import os
import json
import tqdm
import argparse
from collections import defaultdict
import torch
from torch.utils.data import DataLoader
from torch.optim import Adam, Adagrad
from torch.optim.lr_scheduler import LambdaLR
from data_utils import load_word2vec, load_tacred_dataset, save_json, save_preds
from model import CNNForRE, to_parallel, to_fp16, save_model
try:
import apex
from apex import amp
except ModuleNotFoundError:
apex = None
def load_arg():
parser = argparse.ArgumentParser()
parser.add_argument("--word2vec", type=str, default=None)
parser.add_argument("--glove", type=str, default=None)
parser.add_argument("--dataset", type=str)
parser.add_argument("--output", type=str, default=None)
parser.add_argument("--pad_token", type=str, default="[PAD]")
parser.add_argument("--unk_token", type=str, default="[UNK]")
parser.add_argument("--vocab", type=int, default=64000)
parser.add_argument("--seq_len", type=int, default=100)
parser.add_argument("--fp16", action="store_true")
parser.add_argument('--fp16_opt_level', type=str, default="O1")
parser.add_argument("--filter_num", type=int, default=150)
parser.add_argument("--pos_emb_dim", type=int, default=50)
parser.add_argument("--pos_dis_limit", type=int, default=50)
parser.add_argument('--filters', nargs='*', default=[2,3,4,5])
parser.add_argument("--num_workers", type=int, default=5)
parser.add_argument("--do_eval", action="store_true")
parser.add_argument("--label_weights", action="store_true")
parser.add_argument("--no_cuda", action="store_true")
parser.add_argument("--shuffle", action="store_true")
parser.add_argument("--epoch", type=int, default=100)
parser.add_argument("--batch_size", type=int, default=256)
parser.add_argument("--gradient_accumulation_steps", type=int, default=1)
parser.add_argument("--eval_batch_size",type=int, default=256)
parser.add_argument("--seed", type=int, default=1234)
parser.add_argument("--max_grad_norm", type=float, default=1.0)
parser.add_argument("--weight_decay", type=float, default=1e-3)
parser.add_argument("--optim", choices=["adam", "adagrad"], default="adam")
parser.add_argument("--lr_dec_epoch", type=int, default=1)
parser.add_argument("--lr", type=float, default=3e-5)
parser.add_argument("--adam_B1", type=float, default=0.9)
parser.add_argument("--adam_B2", type=float, default=0.999)
parser.add_argument("--adam_eps", type=float, default=1e-6)
parser.add_argument("--entity_mask", action="store_true")
parser.add_argument("--emb_freeze", action="store_true")
parser.add_argument("--emb_unfreeze", type=int, default=None)
parser.add_argument("--dropout_ratio", type=float, default=0.5)
return parser.parse_args()
def args_to_dict(args):
return {k:str(v) for k, v in args.__dict__.items()}
def print_args(args):
state = args_to_dict(args)
state = json.dumps(state, ensure_ascii=False, indent=4, sort_keys=True, separators=(',', ': '))
print(state)
def save_args(output_dir, args):
state = args_to_dict(args)
save_json(f"{output_dir}/args.json", state)
def set_seed(args):
#random.seed(args.seed)
torch.manual_seed(args.seed)
if args.n_gpu > 0:
torch.cuda.manual_seed_all(args.seed)
def train(args, dataset, dev_dataset, model, do_train=True):
model.train()
dataloader = DataLoader(dataset, shuffle=args.shuffle, batch_size=args.batch_size, num_workers = args.num_workers)
args.total_steps = len(dataloader) * args.epoch // args.gradient_accumulation_steps
lr_lambda = lambda epoch: 0.9 ** (epoch)
if args.optim == "adam":
optimizer = Adam(model.parameters(), lr=args.lr,
betas=(args.adam_B1, args.adam_B2), weight_decay=args.weight_decay, eps=args.adam_eps)
scheduler = LambdaLR(optimizer, lr_lambda=lr_lambda)
else:
optimizer = Adagrad(model.parameters(), lr=args.lr, weight_decay=args.weight_decay)
scheduler = LambdaLR(optimizer, lr_lambda=lr_lambda)
model, optimizer = to_fp16(args, model, optimizer)
model = to_parallel(args, model)
steps = 0
best_score = defaultdict(lambda:-1)
best_preds, best_epoch = None, None
for epoch in range(1,args.epoch+1):
if not do_train:
break
outputs = []
tr_loss = []
if epoch >= args.lr_dec_epoch:
scheduler.step()
if args.emb_unfreeze is not None and epoch >= args.emb_unfreeze:
model.emb_freeze = False
for batch in tqdm.tqdm(dataloader, desc=f"TRAIN {epoch}"):
loss, logit, *_ = model(input_ids=batch["input_ids"].to(args.device),
pos1_ids=batch["pos1_ids"].to(args.device),
pos2_ids=batch["pos2_ids"].to(args.device),
labels=batch["label"].to(args.device))
outputs += list(zip(batch["example_id"].tolist(), logit.cpu().tolist()))
if args.n_gpu > 1:
loss = loss.mean()
if args.gradient_accumulation_steps > 1:
loss = loss / args.gradient_accumulation_steps
if args.fp16:
with amp.scale_loss(loss, optimizer) as scaled_loss:
scaled_loss.backward()
else:
loss.backward()
tr_loss.append(loss.item())
steps += 1
if steps % args.gradient_accumulation_steps == 0:
if args.fp16:
torch.nn.utils.clip_grad_norm_(amp.master_params(optimizer), args.max_grad_norm)
else:
torch.nn.utils.clip_grad_norm_(model.parameters(), args.max_grad_norm)
optimizer.step()
model.zero_grad()
print(f"|LOSS|{sum(tr_loss)/len(tr_loss)}|LR|{scheduler.get_lr()}|")
score, preds = dataset.evaluate(outputs)
print(f"|{'TRAIN':<7}|{score['precision']:>6.2f}|{score['recall']:>6.2f}|{score['f1']:>6.2f}|")
dev_score, dev_preds = eval(args, dev_dataset, model)
print(f"|{'DEV':<7}|{dev_score['precision']:>6.2f}|{dev_score['recall']:>6.2f}|{dev_score['f1']:>6.2f}|")
if dev_score['f1'] > best_score['f1']:
best_epoch = epoch
best_score = dev_score
best_preds = dev_preds
best_model_param = model.state_dict()
model.freeze = True
if best_preds is None:
best_score, best_preds = eval(args, dev_dataset, model)
else:
model.load_state_dict(best_model_param)
print(f"|{'BEST DEV':<7}|{best_score['precision']:>6.2f}|{best_score['recall']:>6.2f}|{best_score['f1']:>6.2f}|")
score, preds = eval(args, dataset, model)
print(f"|{'BEST(DEV) TRAIN':<7}|{score['precision']:>6.2f}|{score['recall']:>6.2f}|{score['f1']:>6.2f}|")
return model, score, best_score, preds, best_preds, best_epoch
def eval(args, dataset, model):
model.eval()
dataloader = DataLoader(dataset, batch_size=args.eval_batch_size, num_workers = args.num_workers)
outputs = []
with torch.no_grad():
for batch in tqdm.tqdm(dataloader, desc="EVAL"):
logit, *_ = model(input_ids=batch["input_ids"].to(args.device),
pos1_ids=batch["pos1_ids"].to(args.device),
pos2_ids=batch["pos2_ids"].to(args.device))
outputs += list(zip(batch["example_id"].tolist(), logit.cpu().tolist()))
return dataset.evaluate(outputs)
def main(args=None):
if args is None:
args = load_arg()
args.device = torch.device("cuda" if torch.cuda.is_available() and not args.no_cuda else "cpu")
args.n_gpu = torch.cuda.device_count()
set_seed(args)
print_args(args)
if args.glove is not None:
embedding_vectors, word2id = load_word2vec(args.glove, vocab=args.vocab, use_gensim=False)
else:
embedding_vectors, word2id = load_word2vec(args.word2vec, vocab=args.vocab, use_gensim=True)
train_dataset, dev_dataset, test_dataset = load_tacred_dataset(args, word2id)
if args.entity_mask:
mask_vectors = torch.randn(len(train_dataset.ner_tags)*2,embedding_vectors.size(1))
embedding_vectors = torch.cat([embedding_vectors, mask_vectors], dim=0)
label_weights = train_dataset.label_weights if args.label_weights else None
model = CNNForRE(args, embedding_vectors, pad_id=train_dataset.pad_id,
num_labels=train_dataset.num_labels, label_weights=label_weights)
do_train = True
if os.path.exists(f"{args.output}/pytorch_model.bin"):
model.load_state_dict(torch.load(f"{args.output}/pytorch_model.bin", map_location="cpu"))
do_train = False
model.to(args.device)
preds, scores = {}, {}
model, scores["train"], scores["dev"], preds["train"], preds["dev"], best_epoch = train(args, train_dataset, dev_dataset, model, do_train)
test_score = None
if args.do_eval:
scores["test"], preds["test"] = eval(args, test_dataset, model)
print(f"|{'TEST':<7}|{scores['test']['precision']:>6.2f}|{scores['test']['recall']:>6.2f}|{scores['test']['f1']:>6.2f}|")
model.to("cpu")
if args.output is not None:
os.makedirs(f"{args.output}/predictions", exist_ok=True)
save_model(args.output, model)
save_args(args.output, args)
save_preds(f"{args.output}/predictions", preds)
save_json(f"{args.output}/scores.json", scores)
return model, scores, best_epoch
if __name__ == '__main__':
main()