forked from fieldtrip/fieldtrip
-
Notifications
You must be signed in to change notification settings - Fork 0
/
ft_specest_mtmfft.m
362 lines (318 loc) · 15.7 KB
/
ft_specest_mtmfft.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
function [spectrum, ntaper, freqoi] = ft_specest_mtmfft(dat, time, varargin)
% FT_SPECEST_MTMFFT computes a fast Fourier transform using multitapering with
% multiple tapers from the DPSS sequence or using a variety of single tapers.
%
% Use as
% [spectrum, ntaper, freqoi] = ft_specest_mtmfft(dat, time, ...)
% where the input arguments are
% dat = matrix of chan*sample
% time = vector, containing time in seconds for each sample
% and the output arguments are
% spectrum = matrix of ntaper*nchan*nfreq of fourier coefficients
% ntaper = vector containing number of tapers per element of freqoi
% freqoi = vector of frequencies in spectrum
%
% Optional arguments should be specified in key-value pairs and can include
% freqoi = vector, containing frequencies of interest
% taper = 'dpss', 'hanning' or many others, see WINDOW (default = 'dpss')
% taperopt = additional taper options to be used in the WINDOW function, see WINDOW
% tapsmofrq = the amount of spectral smoothing through multi-tapering. Note: 4 Hz smoothing means plus-minus 4 Hz, i.e. a 8 Hz smoothing box
% pad = number, total length of data after zero padding (in seconds)
% padtype = string, indicating type of padding to be used, can be 'zero', 'mean', 'localmean', 'edge', or 'mirror' (default = 'zero')
% dimord = 'tap_chan_freq' (default) or 'chan_time_freqtap' for memory efficiency (only when using variable number of slepian tapers)
% polyorder = number, the order of the polynomial to fitted to and removed from the data prior to the fourier transform (default = 0 -> remove DC-component)
% verbose = output progress to console (0 or 1, default 1)
%
% See also FT_FREQANALYSIS, FT_SPECEST_MTMCONVOL, FT_SPECEST_TFR, FT_SPECEST_HILBERT, FT_SPECEST_WAVELET
% Copyright (C) 2010, Donders Institute for Brain, Cognition and Behaviour
%
% This file is part of FieldTrip, see http://www.fieldtriptoolbox.org
% for the documentation and details.
%
% FieldTrip is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% FieldTrip is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with FieldTrip. If not, see <http://www.gnu.org/licenses/>.
%
% $Id$
% these are for speeding up computation of tapers on subsequent calls
persistent previous_argin previous_tap
% get the optional input arguments
taper = ft_getopt(varargin, 'taper'); if isempty(taper), ft_error('You must specify a taper'); end
pad = ft_getopt(varargin, 'pad');
padtype = ft_getopt(varargin, 'padtype', 'zero');
freqoi = ft_getopt(varargin, 'freqoi', 'all');
tapsmofrq = ft_getopt(varargin, 'tapsmofrq');
dimord = ft_getopt(varargin, 'dimord', 'tap_chan_freq');
fbopt = ft_getopt(varargin, 'feedback');
verbose = ft_getopt(varargin, 'verbose', true);
polyorder = ft_getopt(varargin, 'polyorder', 0);
tapopt = ft_getopt(varargin, 'taperopt');
if isempty(fbopt)
fbopt.i = 1;
fbopt.n = 1;
end
% throw errors for required input
if isempty(tapsmofrq) && (strcmp(taper, 'dpss') || strcmp(taper, 'sine'))
ft_error('you need to specify tapsmofrq when using dpss or sine tapers')
end
% this does not work on integer data
dat = cast(dat, 'double');
% Set n's
[nchan,ndatsample] = size(dat);
% This does not work on integer data
if ~isa(dat, 'double') && ~isa(dat, 'single')
dat = cast(dat, 'double');
end
% Remove polynomial fit from the data -> default is demeaning
if polyorder >= 0
dat = ft_preproc_polyremoval(dat, polyorder, 1, ndatsample);
end
% Determine fsample and set total time-length of data
fsample = 1./mean(diff(time));
dattime = ndatsample / fsample; % total time in seconds of input data
% Zero padding
if round(pad * fsample) < ndatsample
ft_error('the padding that you specified is shorter than the data');
end
if isempty(pad) % if no padding is specified padding is equal to current data length
pad = dattime;
end
postpad = ceil((pad - dattime) * fsample);
endnsample = round(pad * fsample); % total number of samples of padded data
endtime = pad; % total time in seconds of padded data
% Set freqboi and freqoi
freqoiinput = freqoi;
if isnumeric(freqoi) % if input is a vector
freqboi = round(freqoi ./ (fsample ./ endnsample)) + 1; % is equivalent to: round(freqoi .* endtime) + 1;
freqboi = unique(freqboi);
freqoi = (freqboi-1) ./ endtime; % boi - 1 because 0 Hz is included in fourier output
elseif strcmp(freqoi,'all') % if input was 'all'
freqboilim = round([0 fsample/2] ./ (fsample ./ endnsample)) + 1;
freqboi = freqboilim(1):1:freqboilim(2);
freqoi = (freqboi-1) ./ endtime;
end
nfreqboi = length(freqboi);
nfreqoi = length(freqoi);
if (strcmp(taper, 'dpss') || strcmp(taper, 'sine')) && numel(tapsmofrq)~=1 && (numel(tapsmofrq)~=nfreqoi)
ft_error('tapsmofrq needs to contain a smoothing parameter for every frequency when requesting variable number of slepian tapers')
end
% throw a warning if input freqoi is different from output freqoi
if isnumeric(freqoiinput)
% check whether padding is appropriate for the requested frequency resolution
rayl = 1/endtime;
if any(rem(freqoiinput,rayl)) % not always the case when they mismatch
ft_warning('padding not sufficient for requested frequency resolution, for more information please see the FAQs on www.ru.nl/neuroimaging/fieldtrip');
end
if numel(freqoiinput) ~= numel(freqoi) % freqoi will not contain double frequency bins when requested
ft_warning('output frequencies are different from input frequencies, multiples of the same bin were requested but not given');
else
if any(abs(freqoiinput-freqoi) >= eps*1e6)
ft_warning('output frequencies are different from input frequencies');
end
end
end
% determine whether tapers need to be recomputed
current_argin = {time, postpad, taper, tapsmofrq, freqoi, tapopt, dimord}; % reasoning: if time and postpad are equal, it's the same length trial, if the rest is equal then the requested output is equal
if isequal(current_argin, previous_argin)
% don't recompute tapers
tap = previous_tap;
else
% recompute tapers
switch taper
case 'dpss'
if numel(tapsmofrq)==1
% create a sequence of DPSS tapers, ensure that the input arguments are double precision
tap = double_dpss(ndatsample,ndatsample*(tapsmofrq./fsample))';
% remove the last taper because the last slepian taper is always messy
tap = tap(1:(end-1), :);
% give error/warning about number of tapers
if isempty(tap)
ft_error('datalength to short for specified smoothing\ndatalength: %.3f s, smoothing: %.3f Hz, minimum smoothing: %.3f Hz',ndatsample/fsample,tapsmofrq,fsample/ndatsample);
elseif size(tap,1) == 1
ft_warning('using only one taper for specified smoothing');
end
elseif numel(tapsmofrq)>1
tap = cell(1,nfreqoi);
for ifreqoi = 1:nfreqoi
% create a sequence of DPSS tapers, ensure that the input arguments are double precision
currtap = double_dpss(ndatsample, ndatsample .* (tapsmofrq(ifreqoi) ./ fsample))';
% remove the last taper because the last slepian taper is always messy
currtap = currtap(1:(end-1), :);
% give error/warning about number of tapers
if isempty(currtap)
ft_error('%.3f Hz: datalength to short for specified smoothing\ndatalength: %.3f s, smoothing: %.3f Hz, minimum smoothing: %.3f Hz',freqoi(ifreqoi), ndatsample/fsample,tapsmofrq(ifreqoi),fsample/ndatsample(ifreqoi));
elseif size(currtap,1) == 1
disp([num2str(freqoi(ifreqoi)) ' Hz: WARNING: using only one taper for specified smoothing'])
end
tap{ifreqoi} = currtap;
end
end
case 'sine'
if numel(tapsmofrq)==1
% create a sequence of sine tapers,
tap = sine_taper(ndatsample, ndatsample*(tapsmofrq./fsample))';
% remove the last taper
tap = tap(1:(end-1), :);
% give error/warning about number of tapers
if isempty(tap)
ft_error('datalength to short for specified smoothing\ndatalength: %.3f s, smoothing: %.3f Hz, minimum smoothing: %.3f Hz',ndatsample/fsample,tapsmofrq,fsample/ndatsample);
elseif size(tap,1) == 1
ft_warning('using only one taper for specified smoothing');
end
elseif numel(tapsmofrq)>1
tap = cell(1,nfreqoi);
for ifreqoi = 1:nfreqoi
% create a sequence of sine tapers
currtap = sine_taper(ndatsample, ndatsample .* (tapsmofrq(ifreqoi) ./ fsample))';
% remove the last taper because the last slepian taper is always messy
currtap = currtap(1:(end-1), :);
% give error/warning about number of tapers
if isempty(currtap)
ft_error('%.3f Hz: datalength to short for specified smoothing\ndatalength: %.3f s, smoothing: %.3f Hz, minimum smoothing: %.3f Hz',freqoi(ifreqoi), ndatsample/fsample,tapsmofrq(ifreqoi),fsample/ndatsample(ifreqoi));
elseif size(currtap,1) == 1
disp([num2str(freqoi(ifreqoi)) ' Hz: WARNING: using only one taper for specified smoothing'])
end
tap{ifreqoi} = currtap;
end
end
case 'sine_old'
% to provide compatibility with the tapers being scaled (which was default
% behavior prior to 29apr2011) yet this gave different magnitude of power
% when comparing with slepian multi tapers
tap = sine_taper_scaled(ndatsample, ndatsample*(tapsmofrq./fsample))';
tap = tap(1:(end-1), :); % remove the last taper
case 'alpha'
ft_error('not yet implemented');
case 'hanning'
tap = hanning(ndatsample)';
tap = tap./norm(tap, 'fro');
otherwise
% create the taper and ensure that it is normalized
if isempty(tapopt) % some windowing functions don't support nargin>1, and window.m doesn't check it
tap = window(taper, ndatsample)';
else
tap = window(taper, ndatsample, tapopt)';
end
tap = tap ./ norm(tap,'fro');
end % switch taper
end % isequal currargin
% set ntaper
if ~((strcmp(taper,'dpss') || strcmp(taper,'sine')) && numel(tapsmofrq)>1) % variable number of slepian tapers not requested
ntaper = repmat(size(tap,1),nfreqoi,1);
else % variable number of slepian tapers requested
ntaper = cellfun(@size,tap,repmat({1},[1 nfreqoi]));
end
% determine phase-shift so that for all frequencies angle(t=0) = 0
timedelay = time(1);
if timedelay ~= 0
angletransform = complex(zeros(1,nfreqoi));
for ifreqoi = 1:nfreqoi
missedsamples = round(timedelay * fsample);
% determine angle of freqoi if oscillation started at 0
% the angle of wavelet(cos,sin) = 0 at the first point of a cycle, with sine being in upgoing flank, which is the same convention as in mtmconvol
anglein = (missedsamples) .* ((2.*pi./fsample) .* freqoi(ifreqoi));
coswav = cos(anglein);
sinwav = sin(anglein);
angletransform(ifreqoi) = atan2(sinwav, coswav);
end
angletransform = repmat(angletransform,[nchan,1]);
end
% compute fft
if ~((strcmp(taper,'dpss') || strcmp(taper,'sine')) && numel(tapsmofrq)>1) % ariable number of slepian tapers not requested
str = sprintf('nfft: %d samples, datalength: %d samples, %d tapers',endnsample,ndatsample,ntaper(1));
[st, cws] = dbstack;
if length(st)>1 && strcmp(st(2).name, 'ft_freqanalysis')
% specest_mtmfft has been called by ft_freqanalysis, meaning that ft_progress has been initialised
ft_progress(fbopt.i./fbopt.n, ['processing trial %d/%d ',str,'\n'], fbopt.i, fbopt.n);
elseif verbose
fprintf([str, '\n']);
end
spectrum = cell(ntaper(1),1);
for itap = 1:ntaper(1)
dum = fft(ft_preproc_padding(bsxfun(@times,dat,tap(itap,:)), padtype, 0, postpad),[], 2);
dum = dum(:,freqboi);
% phase-shift according to above angles
if timedelay ~= 0
dum = dum .* exp(-1i*angletransform);
end
dum = dum .* sqrt(2 ./ endnsample);
spectrum{itap} = dum;
end
spectrum = reshape(vertcat(spectrum{:}),[nchan ntaper(1) nfreqboi]); % collecting in a cell-array and later reshaping provides significant speedups
spectrum = permute(spectrum, [2 1 3]);
else % variable number of slepian tapers requested
switch dimord
case 'tap_chan_freq' % default
% start fft'ing
spectrum = complex(NaN([max(ntaper) nchan nfreqoi]));
for ifreqoi = 1:nfreqoi
str = sprintf('nfft: %d samples, datalength: %d samples, frequency %d (%.2f Hz), %d tapers',endnsample,ndatsample,ifreqoi,freqoi(ifreqoi),ntaper(ifreqoi));
[st, cws] = dbstack;
if length(st)>1 && strcmp(st(2).name, 'ft_freqanalysis') && verbose
% specest_mtmconvol has been called by ft_freqanalysis, meaning that ft_progress has been initialised
ft_progress(fbopt.i./fbopt.n, ['processing trial %d, ',str,'\n'], fbopt.i);
elseif verbose
fprintf([str, '\n']);
end
for itap = 1:ntaper(ifreqoi)
dum = fft(ft_preproc_padding(bsxfun(@times,dat,tap{ifreqoi}(itap,:)), padtype, 0, postpad), [], 2);
dum = dum(:,freqboi(ifreqoi));
% phase-shift according to above angles
if timedelay ~= 0
dum = dum .* exp(-1i*angletransform(:,ifreqoi));
end
dum = dum .* sqrt(2 ./ endnsample);
spectrum(itap,:,ifreqoi) = dum;
end
end % for nfreqoi
case 'chan_freqtap' % memory efficient representation
% create tapfreqind
freqtapind = cell(1,nfreqoi);
tempntaper = [0; cumsum(ntaper(:))];
for ifreqoi = 1:nfreqoi
freqtapind{ifreqoi} = tempntaper(ifreqoi)+1:tempntaper(ifreqoi+1);
end
% start fft'ing
spectrum = complex(zeros([nchan sum(ntaper)]));
for ifreqoi = 1:nfreqoi
str = sprintf('nfft: %d samples, datalength: %d samples, frequency %d (%.2f Hz), %d tapers',endnsample,ndatsample,ifreqoi,freqoi(ifreqoi),ntaper(ifreqoi));
[st, cws] = dbstack;
if length(st)>1 && strcmp(st(2).name, 'ft_freqanalysis') && verbose
% specest_mtmconvol has been called by ft_freqanalysis, meaning that ft_progress has been initialised
ft_progress(fbopt.i./fbopt.n, ['processing trial %d, ',str,'\n'], fbopt.i);
elseif verbose
fprintf([str, '\n']);
end
for itap = 1:ntaper(ifreqoi)
dum = fft(ft_preproc_padding(bsxfun(@times,dat,tap{ifreqoi}(itap,:)), padtype, 0, postpad), [], 2);
dum = dum(:,freqboi(ifreqoi));
% phase-shift according to above angles
if timedelay ~= 0
dum = dum .* exp(-1i*angletransform(:,ifreqoi));
end
dum = dum .* sqrt(2 ./ endnsample);
spectrum(:,freqtapind{ifreqoi}(itap)) = dum;
end
end % for nfreqoi
end % switch dimord
end
% remember the current input arguments, so that they can be
% reused on a subsequent call in case the same input argument is given
previous_argin = current_argin;
previous_tap = tap;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% SUBFUNCTION ensure that the first two input arguments are of double
% precision this prevents an instability (bug) in the computation of the
% tapers for MATLAB 6.5 and 7.0
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function [tap] = double_dpss(a, b, varargin)
tap = dpss(double(a), double(b), varargin{:});