-
Notifications
You must be signed in to change notification settings - Fork 352
/
Copy pathmain.lua
265 lines (233 loc) · 7.47 KB
/
main.lua
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
--
-- An implementation of the method described in 'A Neural Algorithm of Artistic
-- Style' by Leon Gatys, Alexander Ecker, and Matthias Bethge.
--
-- http://arxiv.org/abs/1508.06576
--
require 'torch'
require 'nn'
require 'image'
require 'paths'
require 'optim'
local pl = require('pl.import_into')()
local printf = pl.utils.printf
local cmd = torch.CmdLine()
cmd:text()
cmd:text('A Neural Algorithm of Artistic Style')
cmd:text()
cmd:text('Options:')
cmd:option('--model', 'vgg', '{inception, vgg}. Model to use.')
cmd:option('--style', 'none', 'Path to style image')
cmd:option('--content', 'none', 'Path to content image')
cmd:option('--style_factor', 2e9, 'Trade-off factor between style and content')
cmd:option('--num_iters', 500, 'Number of iterations')
cmd:option('--size', 500, 'Length of image long edge (0 to use original content size)')
cmd:option('--display_interval', 20, 'Iterations between image displays (0 to suppress display)')
cmd:option('--smoothness', 0, 'Total variation norm regularization strength (higher for smoother output)')
cmd:option('--init', 'image', '{image, random}. Initialization mode for optimized image.')
cmd:option('--backend', 'cunn', '{cunn, cudnn}. Neural network CUDA backend.')
cmd:option('--optimizer', 'lbfgs', '{sgd, lbfgs}. Optimization algorithm.')
cmd:option('--cpu', false, 'Optimize on CPU (only with VGG network).')
cmd:option('--output_dir', 'frames', 'Output directory to save to.' )
opt = cmd:parse(arg)
if opt.size <= 0 then
opt.size = nil
end
if not opt.cpu then
require 'cutorch'
require 'cunn'
end
paths.dofile('models/util.lua')
paths.dofile('models/vgg19.lua')
paths.dofile('models/inception.lua')
paths.dofile('images.lua')
paths.dofile('costs.lua')
-- check for model files
local inception_path = 'models/inception_caffe.th'
local vgg_path = 'models/vgg_normalized.th'
if opt.model == 'inception' then
if not paths.filep(inception_path) then
print('ERROR: could not find Inception model weights at ' .. inception_path)
print('run download_models.sh to download model weights')
error('')
end
if opt.cpu then
error('CPU optimization only works with VGG model')
end
elseif opt.model == 'vgg' then
if not paths.filep(vgg_path) then
print('ERROR: could not find VGG model weights at ' .. vgg_path)
print('run download_models.sh to download model weights')
error('')
end
else
error('invalid model: ' .. opt.model)
end
-- load model
local model, style_weights, content_weights
if opt.model == 'inception' then
style_weights = {
['conv1/7x7_s2'] = 1,
['conv2/3x3'] = 1,
['inception_3a'] = 1,
['inception_3b'] = 1,
['inception_4a'] = 1,
['inception_4b'] = 1,
['inception_4c'] = 1,
['inception_4d'] = 1,
['inception_4e'] = 1,
}
content_weights = {
['inception_3a'] = 1,
['inception_4a'] = 1,
}
model = create_inception(inception_path, opt.backend)
elseif opt.model == 'vgg' then
style_weights = {
['conv1_1'] = 1,
['conv2_1'] = 1,
['conv3_1'] = 1,
['conv4_1'] = 1,
['conv5_1'] = 1,
}
content_weights = {
['conv4_2'] = 1,
}
model = create_vgg(vgg_path, opt.backend)
end
-- run on GPU
if opt.cpu then
model:float()
else
model:cuda()
end
collectgarbage()
-- compute normalization factor
local style_weight_sum = 0
local content_weight_sum = 0
for k, v in pairs(style_weights) do
style_weight_sum = style_weight_sum + v
end
for k, v in pairs(content_weights) do
content_weight_sum = content_weight_sum + v
end
-- load content image
local img = preprocess(image.load(opt.content), opt.size)
if not opt.cpu then
img = img:cuda()
end
model:forward(img)
local img_activations, _ = collect_activations(model, content_weights, {})
-- load style image
local art = preprocess(
image.load(opt.style), math.max(img:size(3), img:size(4))
)
if not opt.cpu then
art = art:cuda()
end
model:forward(art)
local _, art_grams = collect_activations(model, {}, style_weights)
art = nil
collectgarbage()
function opfunc(input)
-- forward prop
model:forward(input)
-- backpropagate
local loss = 0
local grad = opt.cpu and torch.FloatTensor() or torch.CudaTensor()
grad:resize(model.output:size()):zero()
for i = #model.modules, 1, -1 do
local module_input = (i == 1) and input or model.modules[i - 1].output
local module = model.modules[i]
local name = module._name
-- add content gradient
if name and content_weights[name] then
local c_loss, c_grad = content_grad(module.output, img_activations[name])
local w = content_weights[name] / content_weight_sum
--printf('[content]\t%s\t%.2e\n', name, w * c_loss)
loss = loss + w * c_loss
grad:add(w, c_grad)
end
-- add style gradient
if name and style_weights[name] then
local s_loss, s_grad = style_grad(module.output, art_grams[name])
local w = opt.style_factor * style_weights[name] / style_weight_sum
--printf('[style]\t%s\t%.2e\n', name, w * s_loss)
loss = loss + w * s_loss
grad:add(w, s_grad)
end
grad = module:backward(module_input, grad)
end
-- total variation regularization for denoising
grad:add(total_var_grad(input):mul(opt.smoothness))
return loss, grad:view(-1)
end
-- image to optimize
local input
if opt.init == 'image' then
input = img
elseif opt.init == 'random' then
input = preprocess(
torch.randn(3, img:size(3), img:size(4)):mul(0.1):add(0.5):clamp(0, 1)
)
if not opt.cpu then
input = input:cuda()
end
else
error('unrecognized initialization option: ' .. opt.init)
end
local timer = torch.Timer()
local output = depreprocess(input):double()
if opt.display_interval > 0 then
image.display(output)
end
-- make directory to save intermediate frames
local frames_dir = opt.output_dir
if not paths.dirp(frames_dir) then
paths.mkdir(frames_dir)
end
image.save(paths.concat(frames_dir, '0000.jpg'), output)
-- set optimizer options
local optim_state
if opt.optimizer == 'sgd' then
optim_state = {
momentum = 0.9,
dampening = 0.0,
}
if opt.model == 'inception' then
optim_state.learningRate = 5e-2
else
optim_state.learningRate = 1e-3
end
elseif opt.optimizer == 'lbfgs' then
optim_state = {
maxIter = 3,
learningRate = 1,
}
else
error('unknown optimizer: ' .. opt.optimizer)
end
-- optimize
for i = 1, opt.num_iters do
local _, loss = optim[opt.optimizer](opfunc, input, optim_state)
loss = loss[1]
-- anneal learning rate
if opt.optimizer == 'sgd' and i % 100 == 0 then
optim_state.learningRate = 0.75 * optim_state.learningRate
end
if i % 10 == 0 then
printf('iter %5d\tloss %8.2e\tlr %8.2e\ttime %4.1f\n',
i, loss, optim_state.learningRate, timer:time().real)
end
if i <= 20 or i % 5 == 0 then
output = depreprocess(input):double()
if opt.display_interval > 0 and i % opt.display_interval == 0 then
image.display(output)
end
image.save(paths.concat(frames_dir, string.format('%04d.jpg',i)), output)
end
end
output = depreprocess(input)
if opt.display_interval > 0 then
image.display(output)
end