-
Notifications
You must be signed in to change notification settings - Fork 0
/
proof_elimstack.v
389 lines (355 loc) · 19.3 KB
/
proof_elimstack.v
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
From iris.algebra Require Import agree auth.
From iris.base_logic.lib Require Import invariants ghost_var ghost_map token.
From smr.program_logic Require Import atomic.
From smr.lang Require Import proofmode notation.
From iris.prelude Require Import options.
From smr Require Import helpers hazptr.spec_hazptr hazptr.spec_stack hazptr.code_elimstack.
Inductive offer_state := OfferPending | OfferRevoked | OfferAccepted | OfferAcked.
Local Instance offer_state_eq_dec : EqDecision offer_state.
Proof. solve_decision. Qed.
Class elimstackG Σ := ElimstackG {
#[local] elimstack_stackG :: ghost_varG Σ (list val);
#[local] elimstack_nodeG :: inG Σ (agreeR (prodO valO (optionO blkO)));
#[local] elimstack_tokG :: tokenG Σ;
#[local] elimstack_offerG :: ghost_varG Σ offer_state;
#[local] elimstack_offer_mapG :: ghost_mapG Σ blk gname;
#[local] elimstack_offer_valG :: inG Σ (agreeR valO);
}.
Definition elimstackΣ : gFunctors := #[ghost_varΣ (list val); GFunctor (agreeR (prodO valO (optionO blkO))); tokenΣ; ghost_varΣ offer_state; ghost_mapΣ blk gname; GFunctor (agreeR valO)].
Global Instance subG_elimstackΣ {Σ} :
subG elimstackΣ Σ → elimstackG Σ.
Proof. solve_inG. Qed.
Section elim_stack.
Context `{!heapGS Σ, !elimstackG Σ}.
Notation iProp := (iProp Σ).
Context (elimN hazptrN : namespace) (DISJN : hazptrN ## elimN).
Let stackN := elimN .@ "stack".
Let offerN := elimN .@ "offer".
(* iExists + iFrame *)
Ltac exfr := repeat (repeat iExists _; iFrame "∗#%").
Variable (hazptr : hazard_pointer_spec Σ hazptrN).
Definition node_info γ_p (x : val) (n : option blk) :=
own γ_p (to_agree (x, n)).
Definition node (p : loc) lv γ_p : iProp :=
∃ x n, ⌜lv = [ x; #(oblk_to_lit n) ]⌝ ∗ node_info γ_p x n.
Fixpoint phys_list γz (lopt : option blk) (xs : list val) : iProp :=
match (lopt, xs) with
| (None , [] ) => True
| (None , _ :: _ ) => False
| (Some _, [] ) => False
| (Some l, x :: xs) => ∃ γ_l n,
hazptr.(Managed) γz l γ_l nodeSize node ∗ node_info γ_l x n ∗
phys_list γz n xs
end.
Local Instance: Inhabited offer_state := populate OfferPending.
Definition offer_state_rep (st : offer_state) : Z :=
match st with
| OfferPending => 0
| OfferRevoked => 2
| OfferAccepted => 1
| OfferAcked => 1
end.
Definition offer_info γ_p (v : val) (st : offer_state) : iProp :=
∃ (γ_pv γ_po : gname), ⌜γ_p = encode (γ_pv, γ_po)⌝ ∗ ghost_var γ_pv (1/2)%Qp st ∗ own γ_po (to_agree v).
Definition offer_data (p : loc) lv γ_p : iProp :=
∃ x st, ⌜lv = [ x; #(offer_state_rep st) ]⌝ ∗ offer_info γ_p x st.
(* NOTE: If we put everything inside `offer_inv` into Managed, then
the existential quantifier of `P` and `Q` makes everything difficult
since we lose the information of `P` and `Q` in the second opening of the invariant.
(--> thus, we cannot apply laterable AU in last step of `OfferPending` case in the proof of `push`)
But, by maintaining small invariant of `offer_inv` in the iris context,
we can avoid second bound of `P` and `Q`, which resolves the problem. *)
Definition offer_inv (offer_loc : blk) (v : val) (γz γn γo : gname) (P Q : iProp) : iProp :=
∃ (st : offer_state), offer_info γn v st ∗
match st with
| OfferPending => P
| OfferAccepted => Q
| _ => token γo
end.
(* Ownership of the stack *)
Definition EStack (γ : gname) (xs : list val) : iProp :=
∃ (γz γs γof : gname), ⌜γ = encode(γz, γs, γof)⌝ ∗ ghost_var γs (1/2)%Qp xs.
Global Instance EStack_Timeless γ xs: Timeless (EStack γ xs).
Proof. apply _. Qed.
Definition stack_push_au γ v Q : iProp :=
AU <{ ∃∃ l, EStack γ l }> @ ⊤∖(↑elimN ∪ ↑ptrsN hazptrN),↑mgmtN hazptrN <{ EStack γ (v :: l), COMM Q }>.
Definition IsOffer (γ : gname) (offer_rep : option blk) (offers : gmap blk gname) : iProp :=
match offer_rep with
| None => True
| Some (offer_loc) =>
∃ Q v (γz γs γn γo γof : gname),
⌜γ = encode (γz, γs, γof)⌝ ∗
inv offerN (offer_inv offer_loc v γz γn γo (stack_push_au γ v Q) Q) ∗
⌜offers !! offer_loc = Some γn⌝
end.
Definition OfferInternalInv (st : loc) (γ γz γs γof : gname) : iProp :=
∃ offer_rep (offers : gmap blk gname),
(st +ₗ offer) ↦ #(oblk_to_lit offer_rep) ∗
IsOffer γ offer_rep offers ∗
ghost_map_auth γof 1 offers ∗
[∗ map] off ↦ γn ∈ offers, hazptr.(Managed) γz off γn nodeSize offer_data.
Definition EStackInternalInv (st : loc) (γ γz γs γof : gname) : iProp :=
∃ (h : option blk) (xs : list val),
phys_list γz h xs ∗ (st +ₗ head) ↦ #(oblk_to_lit h) ∗ ghost_var γs (1/2)%Qp xs ∗
OfferInternalInv st γ γz γs γof.
(* Persistent assertions about the stack *)
Definition IsEStack (γ : gname) (st : loc) : iProp :=
∃ (d : loc) (γz γs γof : gname),
⌜γ = encode(γz, γs, γof)⌝ ∗
(st +ₗ domain) ↦□ #d ∗ hazptr.(IsHazardDomain) γz d ∗
inv stackN (EStackInternalInv st γ γz γs γof).
Global Instance IsEStack_Persistent γ l : Persistent (IsEStack γ l).
Proof. apply _. Qed.
Lemma estack_new_spec :
stack_new_spec' elimN hazptrN estack_new hazptr EStack IsEStack.
Proof.
iIntros (γz d Φ) "!> #IHD HΦ".
wp_lam. wp_alloc st as "st↦" "†st". wp_pures.
repeat (wp_apply (wp_store_offset with "st↦") as "st↦"; [by simplify_list_eq|]; wp_pures).
rewrite !array_cons !Loc.add_assoc.
iDestruct "st↦" as "(st.h↦ & st.of↦ & st.d↦ & _)".
iMod (ghost_var_alloc []) as (γs) "[Hγs Hγs']".
iMod (ghost_map_alloc_empty) as (γof) "Hγof".
remember (encode (γz, γs, γof)) as γ eqn:Hγ.
iMod (pointsto_persist with "st.d↦") as "#st.d↦".
iMod (inv_alloc stackN _ (EStackInternalInv st γ γz γs γof) with "[st.h↦ Hγs st.of↦ Hγof]") as "#Hinv_stack".
{ iNext. iExists None, []. rewrite Loc.add_0. iFrame. iExists None. iFrame. auto. }
iApply ("HΦ" $! γ). iSplitR "Hγs'"; by exfr.
Qed.
Lemma estack_push_spec :
stack_push_spec' elimN hazptrN (estack_push hazptr) EStack IsEStack.
Proof using All.
iIntros (γ st x) "Hst".
iIntros (Φ) "AU".
iDestruct "Hst" as (d γz γs γof) "(%Hγ & #st.d↦ & #IHD & #Hinv_stack)".
iLöb as "IH".
wp_rec. wp_pures. wp_bind (! _)%E.
iInv "Hinv_stack" as (h1 xs1) "(Hplist & >st.h↦ & >Hγs & Hoffer)" "Hclose".
wp_load. iMod ("Hclose" with "[Hplist st.h↦ Hγs Hoffer]") as "_"; first by exfr.
iModIntro. wp_let. wp_alloc n as "n↦" "†n". wp_let. wp_op.
do 2 (wp_apply (wp_store_offset with "n↦") as "n↦"; [by simplify_list_eq|]; wp_pures).
wp_bind (CmpXchg _ _ _).
iInv "Hinv_stack" as (h2 xs2) "(Hplist & >st.h↦ & >Hγs & Hoffer)".
destruct (decide (h1 = h2)) as [->|NEQ].
- (* CAS success --> similar proof as treiber stack *)
clear xs1. wp_cmpxchg_suc.
iMod (own_alloc (to_agree (x, h2))) as (γn) "#Hγn"; [done|].
iMod (hazptr.(hazard_domain_register) node with "IHD [$n↦ $†n]") as "G_new"; [solve_ndisj|by exfr|].
iMod "AU" as (xs) "[Hst [_ Commit]]".
iDestruct "Hst" as (γz' γs' γof') "[%Hγ' Hγs']". encode_agree Hγ.
iDestruct (ghost_var_agree with "Hγs Hγs'") as %<-.
iMod (ghost_var_update_halves (x :: xs2) with "Hγs Hγs'") as "[Hγs Hγs']".
iMod ("Commit" with "[Hγs']") as "HΦ"; first by exfr.
iModIntro. iSplitL "st.h↦ Hplist Hγs Hγn G_new Hoffer".
{ iExists (Some _), (_ :: _). simpl. exfr. }
wp_pures. iApply "HΦ".
- (* CAS failed --> make an offer *)
wp_cmpxchg_fail; [destruct h1, h2; simpl; naive_solver..|].
iModIntro. iSplitL "Hplist st.h↦ Hγs Hoffer"; first by exfr.
wp_pures.
wp_apply (wp_store_offset with "n↦") as "n↦"; [by simplify_list_eq|]; wp_pures.
(* make an offer *)
iMod token_alloc as (γo) "Htok".
iMod (ghost_var_alloc OfferPending) as (γn_v) "[Hγn_v Hγn_v']".
iMod (own_alloc (to_agree x)) as (γn_o) "#Hγn_o"; [done|].
remember (encode (γn_v, γn_o)) as γn eqn:Hγn.
iMod (hazptr.(hazard_domain_register) offer_data with "IHD [$n↦ $†n Hγn_o Hγn_v]") as "G_new"; [solve_ndisj| |].
{ iExists x, OfferPending. iSplitR; by exfr. }
iMod (inv_alloc offerN _ (offer_inv n x γz γn γo (stack_push_au _ _ _) _) with "[AU Hγn_v']") as "#Hinv_noffer".
{ iExists OfferPending. exfr. }
wp_bind (_ <- _)%E. clear NEQ h2 xs2.
iInv "Hinv_stack" as (h2 xs2) "(Hplist & >st.h↦ & >Hγs & (%offer_rep & %offers & st.of↦ & _ & >γof & Hoffers))" "Hclose".
wp_store.
destruct (offers !! n) eqn:Hn.
{ rewrite big_sepM_lookup_acc; [|apply Hn].
iDestruct "Hoffers" as "[G_new' _]".
iDestruct (hazptr.(managed_exclusive) with "G_new G_new'") as %[]. }
iMod (ghost_map_insert _ γn with "γof") as "[γof key]"; [apply Hn|].
iMod ("Hclose" with "[Hplist st.h↦ Hγs st.of↦ γof Hoffers G_new]") as "_".
{ iFrame "γof". iFrame "∗#%". iExists (Some n). iFrame "∗#%".
iSplitR; last (rewrite big_sepM_insert); try done; exfr. by simplify_map_eq. }
(* Retract the offer *)
iModIntro. wp_pures. wp_bind (_ <- _)%E. clear h2 xs2.
iInv "Hinv_stack" as (h2 xs2) "(Hplist & >st.h↦ & >Hγs & (%offer_rep' & %offers' & st.of↦ & _ & >γof & Hoffers))" "Hclose".
wp_store.
(* Obtain the managed pointer again *)
iDestruct (ghost_map_lookup with "γof key") as %res.
rewrite big_sepM_delete; [|apply res]. clear res.
iDestruct "Hoffers" as "[G_new Hoffers]".
iMod (ghost_map_delete with "γof key") as "γof".
iMod ("Hclose" with "[Hplist st.h↦ Hγs st.of↦ γof Hoffers]") as "_".
{ repeat iExists _. iFrame "∗#%". iExists None. exfr. }
(* See if someone took it *)
iModIntro. wp_pure credit:"Hlc". wp_pures.
wp_bind (CmpXchg _ _ _). clear offer_rep Hn offers h2 xs2.
iInv "G_new" as (lv) "(_ & n↦ & >Hod & G_new)".
iDestruct "Hod" as (v stat) "[-> (%γn_v' & %γn_o' & %Hγn' & Hγn_v & #Hγn_o')]". encode_agree Hγn.
iCombine "Hγn_o Hγn_o'" gives %<-%to_agree_op_inv_L. iClear "Hγn_o'".
iInv "Hinv_noffer" as (stat') "[>(%γn_v' & %γn_o' & %Hγn' & Hγn_v' & _) Hstat']" "Hclose". encode_agree Hγn.
iMod (lc_fupd_elim_later with "Hlc Hstat'") as "Hstat'".
destruct stat; simpl.
+ (* OfferPending *)
wp_apply (wp_cmpxchg_suc_offset with "n↦") as "n↦"; [by simplify_list_eq|done|by constructor|].
iDestruct (ghost_var_agree with "Hγn_v Hγn_v'") as %<-.
iMod (ghost_var_update_halves OfferRevoked with "Hγn_v Hγn_v'") as "[Hγn_v Hγn_v']".
iMod ("Hclose" with "[Hγn_v' Htok]") as "_".
{ iExists OfferRevoked. exfr. }
do 2 iModIntro. iSplitL "n↦ Hγn_v".
{ iExists _. iFrame "n↦". simpl. iSplitR; first done. iExists _, OfferRevoked. iSplit; first done. exfr. }
wp_pures. wp_load. wp_let.
wp_apply (hazptr.(hazard_domain_retire_spec) with "IHD G_new") as "_"; [solve_ndisj|..].
wp_seq. wp_apply ("IH" with "Hstat'").
+ (* OfferRevoked --> impossible case *)
iDestruct (ghost_var_agree with "Hγn_v Hγn_v'") as %<-.
iCombine "Htok Hstat'" gives %[].
+ (* OfferAccepted *)
wp_apply (wp_cmpxchg_fail_offset with "n↦") as "n↦"; [by simplify_list_eq|done|by constructor|].
iDestruct (ghost_var_agree with "Hγn_v Hγn_v'") as %<-.
iMod (ghost_var_update_halves OfferAcked with "Hγn_v Hγn_v'") as "[Hγn_v Hγn_v']".
iMod ("Hclose" with "[Hγn_v' Htok]") as "_". { iExists OfferAcked. exfr. }
do 2 iModIntro. iSplitL "n↦ Hγn_v".
{ iExists _. iFrame "n↦". iSplit; [done|]. iExists _, OfferAcked. iSplit; [done|]. exfr. }
wp_pures. wp_load. wp_let.
wp_apply (hazptr.(hazard_domain_retire_spec) with "IHD G_new") as "_"; [solve_ndisj|].
wp_pures. by iApply "Hstat'".
+ (* OfferAcked --> impossible case *)
iDestruct (ghost_var_agree with "Hγn_v Hγn_v'") as %<-.
iCombine "Htok Hstat'" gives %[].
Qed.
Lemma estack_pop_spec :
stack_pop_spec' elimN hazptrN (estack_pop hazptr) EStack IsEStack.
Proof using All.
iIntros (γ st) "#Hstack".
iDestruct "Hstack" as (dom γz γs γof) "(%Hγ & st.d↦ & IHD & #Hinv_stack)".
iIntros (Φ) "AU".
wp_lam. wp_load. wp_let.
wp_apply (hazptr.(shield_new_spec) with "IHD [//]") as (s) "S"; [solve_ndisj|..].
wp_let. wp_bind (estack_pop_loop _ _ _).
move: Deactivated => s_st.
iLöb as "IH" forall (s_st).
wp_rec. wp_pures.
awp_apply (hazptr.(shield_protect_spec) with "IHD S"); [solve_ndisj|].
iInv "Hinv_stack" as (h1 xs1) "(Hplist & >st.h↦ & >Hγs & Hoffer)".
destruct h1 as [h1|]; destruct xs1 as [|x1 xs1]; simpl;
try (iMod "Hplist"; done); last first.
{ (* empty stack case *)
iAaccIntro with "[st.h↦]".
{ instantiate (1 := [tele_arg None; inhabitant; 0; (λ p : blk, node p)]). simpl. iFrame. }
{ simpl. iIntros "[st.h↦ _] !>". iFrame. }
simpl. iIntros "[st.h↦ S]".
iMod "AU" as (xs) "[EStack [_ Commit]]".
iDestruct "EStack" as (γz' γs' γof') "[%Hγ' Hγs']". encode_agree Hγ.
iDestruct (ghost_var_agree with "Hγs Hγs'") as %<-.
iMod ("Commit" with "[Hγs']") as "HΦ"; first by exfr.
iModIntro. iSplitL "st.h↦ Hγs Hoffer".
{ iExists None, []. exfr. }
wp_pures.
wp_apply (hazptr.(shield_drop_spec) with "IHD S") as "_"; [solve_ndisj|..].
wp_seq. iApply "HΦ". }
(* nonempty stack case *)
iDestruct "Hplist" as (γ_h1 n1) "(G_h1 & #Info_h1 & Hplist)".
iAaccIntro with "[st.h↦ G_h1]".
{ instantiate (1 := [tele_arg (Some _); _; _; _]). simpl. iFrame. }
{ iIntros "[st.h↦ G_h1] !>". exfr. }
simpl. iIntros "(st.h↦ & G_h1 & S) !>". iSplitR "S AU".
{ iExists (Some h1), (x1 :: xs1). iFrame "∗#%". }
wp_pures.
wp_apply (shield_read with "S") as (??) "(S & #Info_h1' & %EQ)"; [solve_ndisj|lia|].
iDestruct "Info_h1'" as (x1' n1') "[-> Info_h1']". injection EQ as [= <-].
iCombine "Info_h1 Info_h1'" gives %[= <- <-]%to_agree_op_inv_L.
iClear "Info_h1'".
wp_let. wp_op. wp_bind (CmpXchg _ _ _).
iInv "Hinv_stack" as (h2 xs2) "(Hplist & >st.h↦ & >Hγs & Hoffer)".
destruct (decide (h2 = Some h1)) as [->|NE].
- (* CAS success *)
simpl. wp_cmpxchg_suc.
iMod "AU" as (xs) "[EStack [_ Commit]]".
iDestruct "EStack" as (γz' γs' γof') "[%Hγ' Hγs']". encode_agree Hγ.
iDestruct (ghost_var_agree with "Hγs Hγs'") as %<-.
destruct xs2 as [|x2 xs2]; [iDestruct "Hplist" as %[]|].
iMod (ghost_var_update_halves xs2 with "Hγs Hγs'") as "[Hγs Hγs']".
iMod ("Commit" with "[Hγs']") as "HΦ"; first by exfr.
simpl. iDestruct "Hplist" as (γ_h2 n2) "(G_h2 & #Info_h2 & Hplist)".
iDestruct (hazptr.(shield_managed_agree) with "S G_h2") as %<-.
iCombine "Info_h1 Info_h2" gives %[= <- <-]%to_agree_op_inv_L.
iClear "Info_h2".
iModIntro. iSplitL "Hplist st.h↦ Hγs Hoffer"; first by exfr.
wp_pures. wp_apply (shield_read with "S") as (??) "(S & #Info_h1' & %EQ)"; [solve_ndisj|lia|].
iDestruct "Info_h1'" as (x1' n1') "[-> Info_h1']". injection EQ as [= <-].
iCombine "Info_h1 Info_h1'" gives %[= <- <-]%to_agree_op_inv_L.
iClear "Info_h1'".
wp_pures. wp_load. wp_let.
wp_apply (hazptr.(hazard_domain_retire_spec) with "IHD G_h2") as "_"; [solve_ndisj|].
wp_pures.
wp_apply (hazptr.(shield_drop_spec) with "IHD S") as "_"; [solve_ndisj|].
wp_pures. iApply "HΦ".
- (* CAS failed --> take an offer *)
wp_cmpxchg_fail.
iSplitL "Hγs st.h↦ Hplist Hoffer"; first by exfr.
iModIntro. wp_pures.
awp_apply (hazptr.(shield_protect_spec) with "IHD S"); [solve_ndisj|]. clear NE h2 xs2.
iInv "Hinv_stack" as (h2 xs2) "(Hplist & >st.h↦ & >Hγs & (%offer_rep & %offers & >st.of↦ & Hio & >γof & Hoffers))".
destruct offer_rep as [n|]; last first.
{ (* no offer *)
iAaccIntro with "[st.of↦]".
{ instantiate (1 := [tele_arg None; inhabitant; 0; (λ p : blk, node p)]). simpl. iFrame. }
{ simpl. iIntros "[st.of↦ _] !>". iFrame. }
simpl. iIntros "[st.of↦ S] !>".
iSplitL "st.of↦ γof Hoffers Hplist st.h↦ Hγs".
{ repeat iExists _. iFrame "∗#%". }
wp_pures. wp_apply ("IH" with "AU S"). }
(* offer exists *)
simpl. iDestruct "Hio" as (Q v ?????) "(>%Hγ' & #Hinv_noffer & >%res)". encode_agree Hγ.
rewrite big_sepM_lookup_acc; [|apply res].
iDestruct "Hoffers" as "[G_γn Hoffers]".
iAaccIntro with "[st.of↦ G_γn]".
{ instantiate (1 := [tele_arg (Some _); _; _; _]). iFrame. }
{ simpl. iIntros "[st.of↦ G_γn] !>". iFrame. iNext.
repeat iExists _. iFrame "∗#%". exfr. by iApply "Hoffers". }
simpl. iIntros "[st.of↦ [G_γn S]] !>".
iSplitR "AU S".
{ repeat iExists _. iFrame "∗#%". exfr. by iApply "Hoffers". }
wp_pure credit:"Hlc". wp_pures. wp_bind (CmpXchg _ _ _).
iInv "S" as (lv) "(_ & n↦ & >Hod & S)".
iDestruct "Hod" as (x stat) "[-> (%γn_v & %γn_o & %Hγn & Hγn_v & #Hγn_o)]".
destruct (decide (stat = OfferPending)) as [->|]; last first.
{ (* CAS at state position failed *)
wp_apply (wp_cmpxchg_fail_offset with "n↦") as "n↦"; [by simplify_list_eq|by destruct stat|by constructor|].
iModIntro. iSplitL "n↦ Hγn_v".
{ iExists _. iFrame "n↦". iSplit; [done|]. iExists x, stat. iSplit; [done|]. exfr. }
wp_pures. wp_apply ("IH" with "AU S"). }
(* CAS at state position succeeded *)
wp_apply (wp_cmpxchg_suc_offset with "n↦") as "n↦"; [by simplify_list_eq|done|by constructor|].
iInv "Hinv_noffer" as (stat') "[>(%γn_v' & %γn_o' & %Hγn' & Hγn_v' & #Hγn_o') Hstat']". encode_agree Hγn.
iCombine "Hγn_o Hγn_o'" gives %<-%to_agree_op_inv_L. iClear "Hγn_o'".
iDestruct (ghost_var_agree with "Hγn_v Hγn_v'") as %<-.
iMod (lc_fupd_elim_later with "Hlc Hstat'") as "AU_off". clear h2 xs2.
iInv "Hinv_stack" as (h2 xs2) "(Hplist & >st.h↦ & >Hγs & (%offer_rep' & %offers' & >st.of↦ & Hio & >γof & Hoffers))".
iMod "AU_off" as (l) "[Hstack [_ Commit]]"; [solve [eauto 13 with ndisj]|].
iDestruct "Hstack" as (γz' γs' γof') "[%Hγ' Hγs']". encode_agree Hγ.
iDestruct (ghost_var_agree with "Hγs Hγs'") as %<-.
iMod (ghost_var_update_halves (x :: xs2) with "Hγs Hγs'") as "[Hγs Hγs']".
iMod ("Commit" with "[Hγs']") as "HQ"; first by exfr.
iMod "AU" as (xs) "[Hstack [_ Commit]]"; [solve [eauto 13 with ndisj]|].
iDestruct "Hstack" as (γz' γs' γof') "[%Hγ' Hγs']". encode_agree Hγ.
iDestruct (ghost_var_agree with "Hγs Hγs'") as %<-.
iMod (ghost_var_update_halves xs2 with "Hγs Hγs'") as "[Hγs Hγs']".
iMod ("Commit" with "[Hγs']") as "HΦ"; first by exfr.
iModIntro. iSplitL "Hplist st.h↦ Hγs st.of↦ Hoffers Hio γof"; first by exfr.
iMod (ghost_var_update_halves OfferAccepted with "Hγn_v Hγn_v'") as "[Hγn_v Hγn_v']".
iModIntro. iSplitL "Hγn_v' HQ". { iExists OfferAccepted. exfr. }
iModIntro. iSplitL "n↦ Hγn_v".
{ iExists _. iFrame "n↦". iSplit; [done|]. iExists _, OfferAccepted. iSplit; [done|]. repeat iExists _. iFrame "∗#%". }
wp_pures. wp_bind (! _)%E.
iInv "S" as (lv) "(_ & n↦ & >Hod & S)".
iDestruct "Hod" as (x' stat' -> ???) "[Hγn_v #Hγn_o']". encode_agree Hγn.
iCombine "Hγn_o Hγn_o'" gives %<-%to_agree_op_inv_L. iClear "Hγn_o'".
wp_apply (wp_load_offset with "n↦") as "n↦"; [by simplify_list_eq|].
iModIntro. iSplitL "n↦ Hγn_v".
{ iExists _. iFrame "n↦". iSplit; [done|]. iExists x, stat'. iSplit; [done|]. repeat iExists _. iFrame "∗#%". }
wp_pures.
wp_apply (hazptr.(shield_drop_spec) with "IHD S") as "_"; [solve_ndisj|].
wp_seq. iApply "HΦ".
Qed.
#[export] Typeclasses Opaque EStack IsEStack.
End elim_stack.