-
Notifications
You must be signed in to change notification settings - Fork 15
/
Copy pathutils.py
631 lines (508 loc) · 28 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
from argparse import ArgumentTypeError
from prefetch_generator import BackgroundGenerator
from tqdm import tqdm
import time
import os
import torch
import torch.nn as nn
from torchlars import LARS
from torch.optim.lr_scheduler import _LRScheduler
from torch.optim.lr_scheduler import ReduceLROnPlateau
from torch.utils.data.dataset import Subset
from methods.methods_utils.mqnet_util import *
from methods.methods_utils.ccal_util import *
from methods.methods_utils.simclr import semantic_train_epoch
from methods.methods_utils.simclr_CSI import csi_train_epoch
class DataLoaderX(torch.utils.data.DataLoader):
def __iter__(self):
return BackgroundGenerator(super().__iter__())
class SubsetSequentialSampler(torch.utils.data.Sampler):
"""
Samples elements sequentially from a given list of indices, without replacement.
Arguments:
indices (sequence): a sequence of indices
"""
def __init__(self, indices):
self.indices = indices
def __iter__(self):
return (self.indices[i] for i in range(len(self.indices)))
def __len__(self):
return len(self.indices)
class GradualWarmupScheduler(_LRScheduler):
""" Gradually warm-up(increasing) learning rate in optimizer.
Proposed in 'Accurate, Large Minibatch SGD: Training ImageNet in 1 Hour'.
Args:
optimizer (Optimizer): Wrapped optimizer.
multiplier: target learning rate = base lr * multiplier if multiplier > 1.0. if multiplier = 1.0, lr starts from 0 and ends up with the base_lr.
total_epoch: target learning rate is reached at total_epoch, gradually
after_scheduler: after target_epoch, use this scheduler(eg. ReduceLROnPlateau)
"""
def __init__(self, optimizer, multiplier, total_epoch, after_scheduler=None):
self.multiplier = multiplier
if self.multiplier < 1.:
raise ValueError('multiplier should be greater thant or equal to 1.')
self.total_epoch = total_epoch
self.after_scheduler = after_scheduler
self.finished = False
super(GradualWarmupScheduler, self).__init__(optimizer)
def get_lr(self):
if self.last_epoch > self.total_epoch:
if self.after_scheduler:
if not self.finished:
self.after_scheduler.base_lrs = [base_lr * self.multiplier for base_lr in self.base_lrs]
self.finished = True
return self.after_scheduler.get_lr()
return [base_lr * self.multiplier for base_lr in self.base_lrs]
if self.multiplier == 1.0:
return [base_lr * (float(self.last_epoch) / self.total_epoch) for base_lr in self.base_lrs]
else:
return [base_lr * ((self.multiplier - 1.) * self.last_epoch / self.total_epoch + 1.) for base_lr in self.base_lrs]
def step_ReduceLROnPlateau(self, metrics, epoch=None):
if epoch is None:
epoch = self.last_epoch + 1
self.last_epoch = epoch if epoch != 0 else 1 # ReduceLROnPlateau is called at the end of epoch, whereas others are called at beginning
if self.last_epoch <= self.total_epoch:
warmup_lr = [base_lr * ((self.multiplier - 1.) * self.last_epoch / self.total_epoch + 1.) for base_lr in self.base_lrs]
for param_group, lr in zip(self.optimizer.param_groups, warmup_lr):
param_group['lr'] = lr
else:
if epoch is None:
self.after_scheduler.step(metrics, None)
else:
self.after_scheduler.step(metrics, epoch - self.total_epoch)
def step(self, epoch=None, metrics=None):
if type(self.after_scheduler) != ReduceLROnPlateau:
if self.finished and self.after_scheduler:
if epoch is None:
self.after_scheduler.step(None)
else:
self.after_scheduler.step(epoch - self.total_epoch)
else:
return super(GradualWarmupScheduler, self).step(epoch)
else:
self.step_ReduceLROnPlateau(metrics, epoch)
def LossPredLoss(input, target, margin=1.0, reduction='mean'):
assert input.shape == input.flip(0).shape
input = (input - input.flip(0))[:len(input) // 2]
target = (target - target.flip(0))[:len(target) // 2]
target = target.detach()
one = 2 * torch.sign(torch.clamp(target, min=0)) - 1
if reduction == 'mean':
loss = torch.sum(torch.clamp(margin - one * input, min=0))
loss = loss / input.size(0)
elif reduction == 'none':
loss = torch.clamp(margin - one * input, min=0)
else:
NotImplementedError()
return loss
def semantic_train(args, model, criterion, optimizer, scheduler, loader, simclr_aug=None, linear=None, linear_optim=None):
print('>> Train a Semantic Model.')
time_start = time.time()
for epoch in range(args.epochs_ccal):
semantic_train_epoch(args, epoch, model, criterion, optimizer, scheduler, loader, simclr_aug, linear, linear_optim)
scheduler.step()
print('>> Finished, Elapsed Time: {}'.format(time.time()-time_start))
def distinctive_train(args, model, criterion, optimizer, scheduler, loader, simclr_aug=None, linear=None, linear_optim=None):
print('>> Train a Distinctive Model.')
time_start = time.time()
for epoch in range(args.epochs_ccal):
csi_train_epoch(args, epoch, model, criterion, optimizer, scheduler, loader, simclr_aug, linear, linear_optim)
scheduler.step()
print('>> Finished, Elapsed Time: {}'.format(time.time()-time_start))
def csi_train(args, model, criterion, optimizer, scheduler, loader, simclr_aug=None, linear=None, linear_optim=None):
print('>> Train CSI.')
time_start = time.time()
for epoch in range(args.epochs_csi):
csi_train_epoch(args, epoch, model, criterion, optimizer, scheduler, loader, simclr_aug, linear, linear_optim)
scheduler.step()
print('>> Finished, Elapsed Time: {}'.format(time.time()-time_start))
def self_sup_train(args, trial, models, optimizers, schedulers, train_dst, I_index, O_index, U_index):
criterion = nn.CrossEntropyLoss()
train_in_data = Subset(train_dst, I_index)
train_ood_data = Subset(train_dst, O_index)
train_unlabeled_data = Subset(train_dst, U_index)
print("Self-sup training, # in: {}, # ood: {}, # unlabeled: {}".format(len(train_in_data), len(train_ood_data), len(train_unlabeled_data)))
datalist = [train_in_data, train_ood_data, train_unlabeled_data]
multi_datasets = torch.utils.data.ConcatDataset(datalist)
if args.method == 'CCAL':
# if a pre-trained CSI exist, just load it
semantic_path = 'weights/'+ str(args.dataset)+'_r'+str(args.ood_rate)+'_semantic_' + str(trial) + '.pt'
distinctive_path = 'weights/'+ str(args.dataset)+'_r'+str(args.ood_rate)+'_distinctive_' + str(trial) + '.pt'
if os.path.isfile(semantic_path) and os.path.isfile(distinctive_path):
print('Load pre-trained semantic, distinctive models, named: {}, {}'.format(semantic_path, distinctive_path))
args.shift_trans, args.K_shift = get_shift_module(args, eval=True)
args.shift_trans = args.shift_trans.to(args.device)
models['semantic'].load_state_dict(torch.load(semantic_path))
models['distinctive'].load_state_dict(torch.load(distinctive_path))
else:
contrastive_loader = torch.utils.data.DataLoader(dataset=multi_datasets, batch_size=args.ccal_batch_size, shuffle=True)
simclr_aug = get_simclr_augmentation(args, image_size=(32, 32, 3)).to(args.device) # for CIFAR10, 100
# Training the Semantic Coder
if args.data_parallel == True:
linear = models['semantic'].module.linear
else:
linear = models['semantic'].linear
linear_optim = torch.optim.Adam(linear.parameters(), lr=1e-3, betas=(.9, .999), weight_decay=args.weight_decay)
args.shift_trans_type = 'none'
args.shift_trans, args.K_shift = get_shift_module(args, eval=True)
args.shift_trans = args.shift_trans.to(args.device)
semantic_train(args, models['semantic'], criterion, optimizers['semantic'], schedulers['semantic'],
contrastive_loader, simclr_aug, linear, linear_optim)
# Training the Distinctive Coder
if args.data_parallel == True:
linear = models['distinctive'].module.linear
else:
linear = models['distinctive'].linear
linear_optim = torch.optim.Adam(linear.parameters(), lr=1e-3, betas=(.9, .999), weight_decay=args.weight_decay)
args.shift_trans_type = 'rotation'
args.shift_trans, args.K_shift = get_shift_module(args, eval=True)
args.shift_trans = args.shift_trans.to(args.device)
distinctive_train(args, models['distinctive'], criterion, optimizers['distinctive'], schedulers['distinctive'],
contrastive_loader, simclr_aug, linear, linear_optim)
# SSL save
if args.ssl_save == True:
torch.save(models['semantic'].state_dict(), semantic_path)
torch.save(models['distinctive'].state_dict(), distinctive_path)
elif args.method == 'MQNet':
if args.data_parallel == True:
linear = models['csi'].module.linear
else:
linear = models['csi'].linear
linear_optim = torch.optim.Adam(linear.parameters(), lr=1e-3, betas=(.9, .999), weight_decay=args.weight_decay)
args.shift_trans_type = 'rotation'
args.shift_trans, args.K_shift = get_shift_module(args, eval=True)
args.shift_trans = args.shift_trans.to(args.device)
# if a pre-trained CSI exist, just load it
model_path = 'weights/'+ str(args.dataset)+'_r'+str(args.ood_rate)+'_csi_'+str(trial) + '.pt'
if os.path.isfile(model_path):
print('Load pre-trained CSI model, named: {}'.format(model_path))
models['csi'].load_state_dict(torch.load(model_path))
else:
contrastive_loader = torch.utils.data.DataLoader(dataset=multi_datasets, batch_size=args.csi_batch_size, shuffle=True)
simclr_aug = get_simclr_augmentation(args, image_size=(32, 32, 3)).to(args.device) # for CIFAR10, 100
# Training CSI
csi_train(args, models['csi'], criterion, optimizers['csi'], schedulers['csi'],
contrastive_loader, simclr_aug, linear, linear_optim)
# SSL save
if args.ssl_save == True:
torch.save(models['csi'].state_dict(), model_path)
return models
def mqnet_train_epoch(args, models, optimizers, criterion, delta_loader, meta_input_dict):
models['mqnet'].train()
models['backbone'].eval()
batch_idx = 0
while (batch_idx < args.steps_per_epoch):
for data in delta_loader:
optimizers['mqnet'].zero_grad()
inputs, labels, indexs = data[0].to(args.device), data[1].to(args.device), data[2].to(args.device)
# get pred_scores through MQNet
meta_inputs = torch.tensor([]).to(args.device)
in_ood_masks = torch.tensor([]).type(torch.LongTensor).to(args.device)
for idx in indexs:
meta_inputs = torch.cat((meta_inputs, meta_input_dict[idx.item()][0].reshape((-1, 2))), 0)
in_ood_masks = torch.cat((in_ood_masks, meta_input_dict[idx.item()][1]), 0)
pred_scores = models['mqnet'](meta_inputs)
# get target loss
mask_labels = labels*in_ood_masks # make the label of OOD points to 0 (to calculate loss)
out, features = models['backbone'](inputs)
true_loss = criterion(out, mask_labels) # ground truth loss
mask_true_loss = true_loss*in_ood_masks # make the true_loss of OOD points to 0
loss = LossPredLoss(pred_scores, mask_true_loss.reshape((-1, 1)), margin=1)
loss.backward()
optimizers['mqnet'].step()
batch_idx += 1
def mqnet_train(args, models, optimizers, schedulers, criterion, delta_loader, meta_input_dict):
print('>> Train MQNet.')
for epoch in tqdm(range(args.epochs_mqnet), leave=False, total=args.epochs_mqnet):
mqnet_train_epoch(args, models, optimizers, criterion, delta_loader, meta_input_dict)
schedulers['mqnet'].step()
print('>> Finished.')
def meta_train(args, models, optimizers, schedulers, criterion, labeled_in_loader, unlabeled_loader, delta_loader):
features_in = get_labeled_features(args, models, labeled_in_loader)
if args.mqnet_mode == 'CONF':
informativeness, features_delta, in_ood_masks, indices = get_unlabeled_features(args, models, delta_loader)
elif args.mqnet_mode == 'LL':
informativeness, features_delta, in_ood_masks, indices = get_unlabeled_features_LL(args, models, delta_loader)
purity = get_CSI_score(args, features_in, features_delta)
assert informativeness.shape == purity.shape
if args.mqnet_mode == 'CONF':
meta_input = construct_meta_input(informativeness, purity)
elif args.mqnet_mode == 'LL':
meta_input = construct_meta_input_with_U(informativeness, purity, args, models, unlabeled_loader)
# For enhancing training efficiency, generate meta-input & in-ood masks once, and save it into a dictionary
meta_input_dict = {}
for i, idx in enumerate(indices):
meta_input_dict[idx.item()] = [meta_input[i].to(args.device), in_ood_masks[i]]
# Mini-batch Training
mqnet_train(args, models, optimizers, schedulers, criterion, delta_loader, meta_input_dict)
return models
def train_epoch_LL(args, models, epoch, criterion, optimizers, dataloaders):
models['backbone'].train()
models['module'].train()
batch_idx = 0
while (batch_idx < args.steps_per_epoch):
for data in dataloaders['train']:
inputs, labels = data[0].to(args.device), data[1].to(args.device)
optimizers['backbone'].zero_grad()
optimizers['module'].zero_grad()
# Classification loss for in-distribution
scores, features = models['backbone'](inputs)
target_loss = criterion(scores, labels)
m_backbone_loss = torch.sum(target_loss) / target_loss.size(0)
# loss module for predLoss
if epoch > args.epoch_loss:
# After 120 epochs, stop the gradient from the loss prediction module
features[0] = features[0].detach()
features[1] = features[1].detach()
features[2] = features[2].detach()
features[3] = features[3].detach()
pred_loss = models['module'](features)
pred_loss = pred_loss.view(pred_loss.size(0))
m_module_loss = LossPredLoss(pred_loss, target_loss, margin=1)
loss = m_backbone_loss + m_module_loss
loss.backward()
optimizers['backbone'].step()
optimizers['module'].step()
batch_idx += 1
def train_epoch(args, models, criterion, optimizers, dataloaders):
models['backbone'].train()
batch_idx = 0
while(batch_idx < args.steps_per_epoch):
for data in dataloaders['train']:
inputs, labels = data[0].to(args.device), data[1].to(args.device)
optimizers['backbone'].zero_grad()
scores, features = models['backbone'](inputs)
target_loss = criterion(scores, labels)
m_backbone_loss = torch.sum(target_loss) / target_loss.size(0)
loss = m_backbone_loss
loss.backward()
optimizers['backbone'].step()
batch_idx+=1
#if batch_idx >= steps_per_epoch:
# break
def train(args, models, criterion, optimizers, schedulers, dataloaders):
print('>> Train a Model.')
print("num_epochs: {}, steps_per_epoch: {}, total_update: {}".format(
args.epochs, args.steps_per_epoch, int(args.epochs*args.steps_per_epoch)) )
if args.method in ['Random', 'Uncertainty', 'Coreset', 'BADGE', 'CCAL', 'SIMILAR']:
for epoch in tqdm(range(args.epochs), leave=False, total=args.epochs):
train_epoch(args, models, criterion, optimizers, dataloaders)
schedulers['backbone'].step()
elif args.method in ['LL']: #MQNet
for epoch in tqdm(range(args.epochs), leave=False, total=args.epochs):
train_epoch_LL(args, models, epoch, criterion, optimizers, dataloaders)
schedulers['backbone'].step()
schedulers['module'].step()
elif args.method in ['MQNet']: #MQNet
if args.mqnet_mode == "CONF":
for epoch in tqdm(range(args.epochs), leave=False, total=args.epochs):
train_epoch(args, models, criterion, optimizers, dataloaders)
schedulers['backbone'].step()
elif args.mqnet_mode == "LL":
for epoch in tqdm(range(args.epochs), leave=False, total=args.epochs):
train_epoch_LL(args, models, epoch, criterion, optimizers, dataloaders)
schedulers['backbone'].step()
schedulers['module'].step()
print('>> Finished.')
def test(args, models, dataloaders):
top1 = AverageMeter('Acc@1', ':6.2f')
# Switch to evaluate mode
models['backbone'].eval()
with torch.no_grad():
for i, data in enumerate(dataloaders['test']):
inputs, labels = data[0].to(args.device), data[1].to(args.device)
# Compute output
with torch.no_grad():
scores, _ = models['backbone'](inputs)
# Measure accuracy and record loss
prec1 = accuracy(scores.data, labels, topk=(1,))[0]
top1.update(prec1.item(), inputs.size(0))
print('Test acc: * Prec@1 {top1.avg:.3f}'.format(top1=top1))
return top1.avg
class AverageMeter(object):
"""Computes and stores the average and current value"""
def __init__(self, name, fmt=':f'):
self.name = name
self.fmt = fmt
self.reset()
def reset(self):
self.val = 0
self.avg = 0
self.sum = 0
self.count = 0
def update(self, val, n=1):
self.val = val
self.sum += val * n
self.count += n
self.avg = self.sum / self.count
def __str__(self):
fmtstr = '{name} {val' + self.fmt + '} ({avg' + self.fmt + '})'
return fmtstr.format(**self.__dict__)
def accuracy(output, target, topk=(1,)):
"""Computes the accuracy over the k top predictions for the specified values of k"""
with torch.no_grad():
maxk = max(topk)
batch_size = target.size(0)
_, pred = output.topk(maxk, 1, True, True)
pred = pred.t()
correct = pred.eq(target.view(1, -1).expand_as(pred))
res = []
for k in topk:
correct_k = correct[:k].reshape(-1).float().sum(0, keepdim=True)
res.append(correct_k.mul_(100.0 / batch_size))
return res
def str_to_bool(v):
# Handle boolean type in arguments.
if isinstance(v, bool):
return v
if v.lower() in ('yes', 'true', 't', 'y', '1'):
return True
elif v.lower() in ('no', 'false', 'f', 'n', '0'):
return False
else:
raise ArgumentTypeError('Boolean value expected.')
def get_more_args(args):
cuda = ""
if len(args.gpu) > 1:
cuda = 'cuda'
elif len(args.gpu) == 1:
cuda = 'cuda:' + str(args.gpu[0])
if args.dataset == 'ImageNet':
args.device = cuda if torch.cuda.is_available() else 'cpu'
else:
args.device = cuda if torch.cuda.is_available() else 'cpu'
if args.dataset == 'CIFAR10':
args.channel = 3
args.im_size = (32, 32)
#args.num_IN_class = 4
elif args.dataset == 'CIFAR100':
args.channel = 3
args.im_size = (32, 32)
#args.num_IN_class = 40
elif args.dataset == 'ImageNet50':
args.channel = 3
args.im_size = (224, 224)
#args.num_IN_class = 50
return args
def get_models(args, nets, model, models):
# Normal
if args.method in ['Random', 'Uncertainty', 'Coreset', 'BADGE']:
backbone = nets.__dict__[model](args.channel, args.num_IN_class, args.im_size).to(args.device)
if args.device == "cpu":
print("Using CPU.")
elif args.data_parallel == True:
backbone = nets.nets_utils.MyDataParallel(backbone, device_ids=args.gpu)
models = {'backbone': backbone}
# SIMILAR
elif args.method =='SIMILAR':
backbone = nets.__dict__[model](args.channel, args.num_IN_class+1, args.im_size).to(args.device)
if args.device == "cpu":
print("Using CPU.")
elif args.data_parallel == True:
backbone = nets.nets_utils.MyDataParallel(backbone, device_ids=args.gpu)
models = {'backbone': backbone}
# LL
elif args.method == 'LL':
model_ = model + '_LL'
backbone = nets.__dict__[model_](args.channel, args.num_IN_class, args.im_size).to(args.device)
loss_module = nets.__dict__['LossNet'](args.im_size).to(args.device)
if args.device == "cpu":
print("Using CPU.")
elif args.data_parallel == True:
backbone = nets.nets_utils.MyDataParallel(backbone, device_ids=args.gpu)
loss_module = nets.nets_utils.MyDataParallel(loss_module, device_ids=args.gpu)
models = {'backbone': backbone, 'module': loss_module}
# CCAL
elif args.method == 'CCAL':
backbone = nets.__dict__[model](args.channel, args.num_IN_class, args.im_size).to(args.device)
model_ = model+'_CSI'
model_sem = nets.__dict__[model_](args.channel, args.num_IN_class, args.im_size).to(args.device)
model_dis = nets.__dict__[model_](args.channel, args.num_IN_class, args.im_size).to(args.device)
if args.device == "cpu":
print("Using CPU.")
elif args.data_parallel == True:
backbone = nets.nets_utils.MyDataParallel(backbone, device_ids=args.gpu)
model_sem = nets.nets_utils.MyDataParallel(model_sem, device_ids=args.gpu)
model_dis = nets.nets_utils.MyDataParallel(model_dis, device_ids=args.gpu)
if models == None: #initial round
models = {'backbone': backbone, 'semantic': model_sem, 'distinctive': model_dis}
else:
models['backbone'] = backbone
# MQNet
elif args.method == 'MQNet':
model_ = model + '_LL'
backbone = nets.__dict__[model_](args.channel, args.num_IN_class, args.im_size).to(args.device)
loss_module = nets.__dict__['LossNet'](args.im_size).to(args.device)
model_ = model + '_CSI'
model_csi = nets.__dict__[model_](args.channel, args.num_IN_class, args.im_size).to(args.device)
if args.device == "cpu":
print("Using CPU.")
elif args.data_parallel == True:
backbone = nets.nets_utils.MyDataParallel(backbone, device_ids=args.gpu)
loss_module = nets.nets_utils.MyDataParallel(loss_module, device_ids=args.gpu)
model_csi = nets.nets_utils.MyDataParallel(model_csi, device_ids=args.gpu)
if models == None: #initial round
models = {'backbone': backbone, 'module': loss_module, 'csi': model_csi} #, 'mqnet': mqnet
else:
models['backbone'] = backbone
models['module'] = loss_module
return models
def init_mqnet(args, nets, models, optimizers, schedulers):
models['mqnet'] = nets.__dict__['QueryNet'](input_size=2, inter_dim=64).to(args.device)
optim_mqnet = torch.optim.SGD(models['mqnet'].parameters(), lr=args.lr_mqnet)
sched_mqnet = torch.optim.lr_scheduler.MultiStepLR(optim_mqnet, milestones=[int(args.epochs_mqnet / 2)])
optimizers['mqnet'] = optim_mqnet
schedulers['mqnet'] = sched_mqnet
return models, optimizers, schedulers
def get_optim_configurations(args, models):
print("lr: {}, momentum: {}, decay: {}".format(args.lr, args.momentum, args.weight_decay))
criterion = nn.CrossEntropyLoss(reduction='none').to(args.device)
# Optimizer
if args.optimizer == "SGD":
optimizer = torch.optim.SGD(models['backbone'].parameters(), args.lr, momentum=args.momentum,
weight_decay=args.weight_decay)
elif args.optimizer == "Adam":
optimizer = torch.optim.Adam(models['backbone'].parameters(), args.lr, weight_decay=args.weight_decay)
else:
optimizer = torch.optim.__dict__[args.optimizer](models['backbone'].parameters(), args.lr, momentum=args.momentum,
weight_decay=args.weight_decay)
# LR scheduler
if args.scheduler == "CosineAnnealingLR":
scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(optimizer, args.epochs, eta_min=args.min_lr)
elif args.scheduler == "StepLR":
scheduler = torch.optim.lr_scheduler.StepLR(optimizer, step_size=args.step_size, gamma=args.gamma)
elif args.scheduler == "MultiStepLR":
scheduler = torch.optim.lr_scheduler.MultiStepLR(optimizer, milestones=args.milestone)
else:
scheduler = torch.optim.lr_scheduler.__dict__[args.scheduler](optimizer)
# Normal
if args.method in ['Random', 'Uncertainty', 'Coreset', 'BADGE', 'SIMILAR']:
optimizers = {'backbone': optimizer}
schedulers = {'backbone': scheduler}
# LL (+ loss_pred module)
elif args.method == 'LL':
optim_module = torch.optim.SGD(models['module'].parameters(), lr=args.lr, momentum=args.momentum, weight_decay=args.weight_decay)
sched_module = torch.optim.lr_scheduler.MultiStepLR(optim_module, milestones=args.milestone)
optimizers = {'backbone': optimizer, 'module': optim_module}
schedulers = {'backbone': scheduler, 'module': sched_module}
# CCAL (+ 2 contrastive coders)
elif args.method == 'CCAL':
optim_sem = torch.optim.SGD(models['semantic'].parameters(), lr=args.lr, weight_decay=args.weight_decay)
sched_sem = torch.optim.lr_scheduler.CosineAnnealingLR(optim_sem, args.epochs_ccal, eta_min=args.min_lr)
scheduler_warmup_sem = GradualWarmupScheduler(optim_sem, multiplier=10.0, total_epoch=args.warmup, after_scheduler=sched_sem)
optim_dis = torch.optim.SGD(models['distinctive'].parameters(), lr=args.lr, weight_decay=args.weight_decay)
sched_dis = torch.optim.lr_scheduler.CosineAnnealingLR(optim_dis, args.epochs_ccal, eta_min=args.min_lr)
scheduler_warmup_dis = GradualWarmupScheduler(optim_dis, multiplier=10.0, total_epoch=args.warmup, after_scheduler=sched_dis)
optimizers = {'backbone': optimizer, 'semantic': optim_sem, 'distinctive': optim_dis}
schedulers = {'backbone': scheduler, 'semantic': scheduler_warmup_sem, 'distinctive': scheduler_warmup_dis}
# MQ-Net
elif args.method == 'MQNet':
optim_module = torch.optim.SGD(models['module'].parameters(), lr=args.lr, momentum=args.momentum, weight_decay=args.weight_decay)
sched_module = torch.optim.lr_scheduler.MultiStepLR(optim_module, milestones=args.milestone)
optimizer_csi = torch.optim.SGD(models['csi'].parameters(), lr=args.lr, momentum=args.momentum, weight_decay=1e-6)
optim_csi = LARS(optimizer_csi, eps=1e-8, trust_coef=0.001)
sched_csi = torch.optim.lr_scheduler.CosineAnnealingLR(optim_csi, args.epochs_csi)
scheduler_warmup_csi = GradualWarmupScheduler(optim_csi, multiplier=10.0, total_epoch=args.warmup, after_scheduler=sched_csi)
optimizers = {'backbone': optimizer, 'module': optim_module, 'csi': optim_csi}
schedulers = {'backbone': scheduler, 'module': sched_module, 'csi': scheduler_warmup_csi}
return criterion, optimizers, schedulers