-
Notifications
You must be signed in to change notification settings - Fork 17
/
Copy pathload_noise_data.py
612 lines (548 loc) · 28.9 KB
/
load_noise_data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
import json
import os
import pickle
import random
import numpy as np
import torch
import torchvision.transforms as transforms
from PIL import Image
from sklearn.metrics import roc_auc_score
from torch.utils.data import Dataset, DataLoader
# custom
from deepcore.datasets.cifar10 import cifar10_dataloader
from deepcore.datasets.cifar100 import cifar100_dataloader
from deepcore.datasets.webvision import webvision_dataloader
from deepcore.datasets.clothing1m import clothing1m_dataloader
from deepcore.datasets.imagenet import imagenet_dataloader
from deepcore.datasets.imagenet9 import MyImageNet9
from deepcore.datasets.mini_imagenet import MyMiniImagenet
import torchvision.transforms as T
from randaugment import RandAugmentPC
def unpickle(file):
import _pickle as cPickle
with open(file, 'rb') as fo:
dict = cPickle.load(fo, encoding='latin1')
return dict
def save_preds(exp, probability, clean):
name = './stats/cifar100/stats{}.pcl'
nm = name.format(exp)
if os.path.exists(nm):
probs_history, clean_history = pickle.load(open(nm, "rb"))
else:
probs_history, clean_history = [], []
probs_history.append(probability)
clean_history.append(clean)
pickle.dump((probs_history, clean_history), open(nm, "wb"))
def get_asym_cifar100(root_dir):
super_class = {}
super_class['aquatic mammals'] = ['beaver', 'dolphin', 'otter', 'seal', 'whale']
super_class['fish'] = ['aquarium fish', 'flatfish', 'ray', 'shark', 'trout']
super_class['flowers'] = ['orchid', 'poppy', 'rose', 'sunflower', 'tulip']
super_class['food containers'] = ['bottle', 'bowl', 'can', 'cup', 'plate']
super_class['fruit and vegetables'] = ['apple', 'mushroom', 'orange', 'pear', 'sweet pepper']
super_class['household electrical devices'] = ['clock', 'keyboard', 'lamp', 'telephone', 'television']
super_class['household furniture'] = ['bed', 'chair', 'couch', 'table', 'wardrobe']
super_class['insects'] = ['bee', 'beetle', 'butterfly', 'caterpillar', 'cockroach']
super_class['large carnivores'] = ['bear', 'leopard', 'lion', 'tiger', 'wolf']
super_class['large man-made outdoor things'] = ['bridge', 'castle', 'house', 'road', 'skyscraper']
super_class['large natural outdoor scenes'] = ['cloud', 'forest', 'mountain', 'plain', 'sea']
super_class['large omnivores and herbivores'] = ['camel', 'cattle', 'chimpanzee', 'elephant', 'kangaroo']
super_class['medium mammals'] = ['fox', 'porcupine', 'possum', 'raccoon', 'skunk']
super_class['non-insect invertebrates'] = ['crab', 'lobster', 'snail', 'spider', 'worm']
super_class['people'] = ['baby', 'boy', 'girl', 'man', 'woman']
super_class['reptiles'] = ['crocodile', 'dinosaur', 'lizard', 'snake', 'turtle']
super_class['small mammals'] = ['hamster', 'mouse', 'rabbit', 'shrew', 'squirrel']
super_class['trees'] = ['maple tree', 'oak tree', 'palm tree', 'pine tree', 'willow tree']
super_class['vehicles 1'] = ['bicycle', 'bus', 'motorcycle', 'pickup truck', 'train']
super_class['vehicles 2'] = ['lawn mower', 'rocket', 'streetcar', 'tank', 'tractor']
classes_to_mix = [[] for _ in range(20)]
with open('{}/meta'.format(root_dir), 'rb') as f:
entry = pickle.load(f, encoding='latin1')
for j, fine in enumerate(entry['fine_label_names']):
fine = fine.replace('_', ' ')
for i, coarse in enumerate(entry['coarse_label_names']):
coarse = coarse.replace('_', ' ')
if fine in super_class[coarse]:
classes_to_mix[i].append(j)
return classes_to_mix
# custom
def get_dataloader(args):
if args.dataset == 'CIFAR10':
args.n_class = 10
args.input_size = 32 * 32 * 3
args.channel = 3
args.im_size = (32, 32)
file_path = args.data_path + '/cifar10/'
loader = cifar10_dataloader(args, file_path=file_path, download=False, noise_type=args.noise_type,
noise_rate=args.noise_rate)
elif args.dataset == 'CIFAR100':
args.n_class = 100
args.input_size = 32 * 32 * 3
args.channel = 3
args.im_size = (32, 32)
file_path = args.data_path + '/cifar100/'
loader = cifar100_dataloader(args, file_path=file_path, download=False, noise_type=args.noise_type,
noise_rate=args.noise_rate)
elif args.dataset == 'WebVision':
args.n_class = 50
args.input_size = 224 * 224 * 3
args.channel = 3
args.im_size = (224, 224)
file_path = args.data_path
loader = webvision_dataloader(args, file_path=file_path, download=False)
elif args.dataset == 'Clothing1M':
args.n_class = 14
args.input_size = 224 * 224 * 3
args.channel = 3
args.im_size = (224, 224)
file_path = args.data_path
loader = clothing1m_dataloader(args, file_path=file_path, download=False)
elif args.dataset == 'ImageNet':
args.n_class = 1000
args.input_size = 224 * 224 * 3
args.channel = 3
args.im_size = (224, 224)
file_path = args.data_path
loader = imagenet_dataloader(args, file_path=file_path, download=False, noise_type=args.noise_type,
noise_rate=args.noise_rate)
elif args.dataset in ['MiniImageNet', 'ImageNet9']:
T_normalize = T.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
return loader
def get_dataset(args):
# Normalization
if args.dataset == 'CIFAR10':
T_normalize = T.Normalize([0.4914, 0.4822, 0.4465], [0.2023, 0.1994, 0.2010])
elif args.dataset == 'CIFAR100':
T_normalize = T.Normalize([0.5071, 0.4867, 0.4408], [0.2675, 0.2565, 0.2761])
elif args.dataset == 'WebVision':
T_normalize = T.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
elif args.dataset == 'Clothing1M':
T_normalize = T.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
elif args.dataset in ['MiniImageNet', 'ImageNet9', 'ImageNet']:
T_normalize = T.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
# Transform
if args.dataset in ['CIFAR10', 'CIFAR100']:
train_transform = T.Compose([T.RandomHorizontalFlip(), T.RandomCrop(size=32, padding=4),
T.ToTensor(), T_normalize]) # RandAugmentPC(n=3, m=5),
test_transform = T.Compose([T.ToTensor(), T_normalize])
elif args.dataset in ['WebVision']:
train_transform = T.Compose(
[T.Resize(256), T.RandomCrop(224), T.RandomHorizontalFlip(), T.ToTensor(), T_normalize])
test_transform = T.Compose([T.Resize(256), T.CenterCrop(224), T.ToTensor(), T_normalize])
elif args.dataset in ['Clothing1M']:
train_transform = T.Compose(
[T.Resize(256), T.RandomCrop(224), T.RandomHorizontalFlip(), T.ToTensor(), T_normalize])
test_transform = T.Compose([T.Resize(256), T.CenterCrop(224), T.ToTensor(), T_normalize])
elif args.dataset in ['MiniImageNet', 'ImageNet9', 'ImageNet']:
train_transform = T.Compose(
[T.Resize(256), T.RandomCrop(224), T.RandomHorizontalFlip(), T.ToTensor(), T_normalize])
test_transform = T.Compose([T.Resize(256), T.CenterCrop(224), T.ToTensor(), T_normalize])
# Path assignment
if args.nsml == False: # local
if args.dataset == 'CIFAR10':
file_path = args.data_path + '/cifar10/'
elif args.dataset == 'CIFAR100':
file_path = args.data_path + '/cifar100/'
else: # NSML
file_path = args.nsml_data_path + '/train'
print(args.nsml_data_path, file_path)
# Load Dataset
if args.dataset == 'CIFAR10':
train_set = MyCIFAR10(file_path, train=True, download=False, transform=train_transform)
unlabeled_set = MyCIFAR10(file_path, train=True, download=False, transform=test_transform)
test_set = MyCIFAR10(file_path, train=False, download=False, transform=test_transform)
elif args.dataset == 'CIFAR100':
train_set = MyCIFAR100(file_path, train=True, download=False, transform=train_transform)
unlabeled_set = MyCIFAR100(file_path, train=True, download=False, transform=test_transform)
test_set = MyCIFAR100(file_path, train=False, download=False, transform=test_transform)
elif args.dataset == 'WebVision': # TODO
train_set = MyWebVision(file_path, False, mode='train')
unlabeled_set = MyWebVision(file_path, False, mode='train')
test_set = MyWebVision(file_path, False, mode='test')
elif args.dataset == 'Clothing1M': # TODO
train_set = MyClothing1M(file_path, False, mode='train')
unlabeled_set = MyClothing1M(file_path, False, mode='train')
test_set = MyClothing1M(file_path, False, mode='test')
elif args.dataset == 'ImageNet': #
file_path = '/data/pdm102207/imagenet/'
train_set = MyImageNet(file_path + 'train/', transform=train_transform)
unlabeled_set = MyImageNet(file_path + 'train/', transform=test_transform)
test_set = MyImageNet(file_path + 'val/', transform=test_transform)
elif args.dataset == 'MiniImageNet': # TODO:
file_path = '/data/pdm102207/imagenet/'
train_set = MyMiniImagenet(file_path + 'train/', transform=train_transform)
unlabeled_set = MyMiniImagenet(file_path + 'train/', transform=test_transform)
test_set = MyMiniImagenet(file_path + 'val/', transform=test_transform)
elif args.dataset == 'ImageNet9': #
file_path = '/data/pdm102207/imagenet9/'
train_set = MyImageNet9(file_path + 'train/', transform=train_transform) # len = 45405
unlabeled_set = MyImageNet9(file_path + 'train/', transform=test_transform) # len = 45405
test_set = MyImageNet9(file_path + 'val/', transform=test_transform) # len = 4050
# Configuration
if args.dataset in ['CIFAR10', 'CIFAR100']:
args.input_size = 32 * 32 * 3
args.channel = 3
args.im_size = (32, 32)
if args.dataset == 'CIFAR10':
args.n_class = 10
elif args.dataset == 'CIFAR100':
args.n_class = 100
args.num_classes = args.n_class
args.class_names = train_set.classes
elif args.dataset in ['WebVision']:
args.n_train = len(train_set)
args.input_size = 224 * 224 * 3
args.channel = 3
args.im_size = (224, 224)
args.n_class = 50
args.num_classes = args.n_class
args.class_names = train_set.classes
elif args.dataset in ['Clothing1M']:
args.n_train = len(train_set)
args.input_size = 224 * 224 * 3
args.channel = 3
args.im_size = (224, 224)
args.n_class = 14
args.num_classes = args.n_class
args.class_names = train_set.classes
elif args.dataset in ['MiniImageNet', 'ImageNet9', 'ImageNet']:
args.n_train = len(train_set)
args.input_size = 224 * 224 * 3
args.channel = 3
args.im_size = (224, 224)
if args.dataset == 'MiniImageNet':
args.n_class = 100
elif args.dataset == 'ImageNet9':
args.n_class = 9
elif args.dataset == 'ImageNet':
args.n_class = 1000
args.num_classes = args.n_class
args.class_names = train_set.classes
# Noise Injection
train_label = train_set.targets
noise_label = []
idx = list(range(len(train_set)))
random.shuffle(idx)
num_noise = int(args.noise_rate * len(train_set))
noise_idx = idx[:num_noise]
if args.noise_mode == 'sym': # Symmetric Noise
print("Inject Symmetric Noise!")
without_class = True
for i in range(len(train_set)):
if i in noise_idx:
if without_class:
noiselabel = random.randint(0, args.num_classes - 2)
if noiselabel >= train_label[i]:
noiselabel += 1
else:
noiselabel = random.randint(0, args.num_classes - 1)
noise_label.append(noiselabel)
else:
noise_label.append(train_label[i])
elif args.noise_mode == 'asym': # Asymmetric Noise
if args.dataset == 'CIFAR10':
# args.transition = {0: 0, 2: 0, 4: 7, 7: 7, 1: 1, 9: 1, 3: 5, 5: 3, 6: 6, 8: 8} # original
args.transition = {0: 2, 2: 0, 4: 7, 7: 4, 1: 9, 9: 1, 3: 5, 5: 3, 6: 8, 8: 6} # bi-directional
elif args.dataset == 'CIFAR100':
meta_dir = file_path + '/cifar-100-python'
args.transition = get_asym_cifar100(meta_dir)
elif args.dataset == 'ImageNet9':
args.transition = {0: 4, 4: 0, 2: 6, 6: 2, 1: 5, 5: 1, 3: 8, 8: 3, 7: 7} # bi-directional
elif args.dataset == 'ImageNet':
noise_mapping = {0: 2, 2: 0, 4: 7, 7: 4, 1: 9, 9: 1, 3: 5, 5: 3, 6: 8, 8: 6}
for i in range(args.num_classes):
args.transition[i] = (i // 10) * 10 + noise_mapping[i % 10]
for i in range(len(train_set)):
if i in noise_idx:
if args.dataset == 'CIFAR10':
noiselabel = args.transition[train_label[i]]
noise_label.append(noiselabel)
elif args.dataset == 'CIFAR100':
z = [x.copy() for x in args.transition if train_label[i] in x][
0] # random label in the same superclass
z.remove(train_label[i])
noiselabel = random.choice(z)
noise_label.append(noiselabel)
elif args.dataset == 'ImageNet':
noiselabel = args.transition[train_label[i]]
noise_label.append(noiselabel)
elif args.dataset == 'ImageNet9':
noiselabel = args.transition[train_label[i]]
noise_label.append(noiselabel)
else:
noise_label.append(train_label[i])
elif args.noise_mode == 'real': # Real Noise
if args.dataset == 'CIFAR10':
noise_labels = torch.load(args.data_path + '/cifar10/CIFAR-10_human.pt')
noise_label = noise_labels['random_label1'] # ['aggre_label'], ['worse_label']
noise_idx = np.where(noise_labels['random_label1'] != noise_labels['clean_label'])[0]
elif args.dataset == 'CIFAR100':
noise_labels = torch.load(args.data_path + '/cifar100/CIFAR-100_human.pt')
noise_label = noise_labels['noisy_label'] # ['aggre_label'], ['worse_label']
noise_idx = np.where(noise_labels['noisy_label'] != noise_labels['clean_label'])[0]
assert noise_label != []
train_set.targets = np.array(noise_label)
unlabeled_set.targets = train_set.targets
# Split Check
uni, cnt = np.unique(np.array(unlabeled_set.targets), return_counts=True)
print("Train & Unlabeled, # samples per class")
print(uni, cnt)
print("# of noise labels: ", len(noise_idx))
uni, cnt = np.unique(np.array(test_set.targets), return_counts=True)
print("Test, # samples per class")
print(uni, cnt)
return args, train_set, unlabeled_set, test_set, noise_idx
class cifar_dataset(Dataset):
def __init__(self, dataset, r, noise_mode, root_dir, transform, mode, noise_file='', pred=[], probability=[],
log='', oracle='none', mix_labelled=True):
assert oracle in ('none', 'positive', 'negative', 'all', 'negative_shuffle')
assert dataset in ('cifar10', 'cifar100')
without_class = False
self.r = r # noise ratio
self.transform = transform
self.mode = mode
# class transition for asymmetric noise
if dataset == 'cifar10':
self.transition = {0: 0, 2: 0, 4: 7, 7: 7, 1: 1, 9: 1, 3: 5, 5: 3, 6: 6, 8: 8}
elif dataset == 'cifar100':
self.transition = get_asym_cifar100(root_dir)
print("transition: ")
print(self.transition)
self.mix_labelled = mix_labelled
self.num_classes = 10 if dataset == 'cifar10' else 100
if self.mode == 'test':
if dataset == 'cifar10':
test_dic = unpickle('%s/test_batch' % root_dir)
self.test_data = test_dic['data']
self.test_data = self.test_data.reshape((10000, 3, 32, 32))
self.test_data = self.test_data.transpose((0, 2, 3, 1))
self.test_label = test_dic['labels']
elif dataset == 'cifar100':
test_dic = unpickle('%s/test' % root_dir)
self.test_data = test_dic['data']
self.test_data = self.test_data.reshape((10000, 3, 32, 32))
self.test_data = self.test_data.transpose((0, 2, 3, 1))
self.test_label = test_dic['fine_labels']
else:
train_data = []
train_label = []
if dataset == 'cifar10':
for n in range(1, 6):
dpath = '%s/data_batch_%d' % (root_dir, n)
data_dic = unpickle(dpath)
train_data.append(data_dic['data'])
train_label = train_label + data_dic['labels']
train_data = np.concatenate(train_data)
elif dataset == 'cifar100':
train_dic = unpickle('%s/train' % root_dir)
train_data = train_dic['data']
train_label = train_dic['fine_labels']
train_data = train_data.reshape((50000, 3, 32, 32))
train_data = train_data.transpose((0, 2, 3, 1))
if os.path.exists(noise_file):
noise_label = json.load(open(noise_file, "r"))
else: # inject noise
noise_label = []
idx = list(range(50000))
random.shuffle(idx)
num_noise = int(self.r * 50000)
noise_idx = idx[:num_noise]
for i in range(50000):
if i in noise_idx:
if noise_mode == 'sym':
if without_class:
noiselabel = random.randint(0, self.num_classes - 2)
if noiselabel >= train_label[i]:
noiselabel += 1
else:
noiselabel = random.randint(0, self.num_classes - 1)
noise_label.append(noiselabel)
elif noise_mode == 'asym':
if dataset == 'cifar10':
noiselabel = self.transition[train_label[i]]
noise_label.append(noiselabel)
elif dataset == 'cifar100':
z = [x.copy() for x in self.transition if train_label[i] in x][0]
z.remove(train_label[i])
noiselabel = random.choice(z)
noise_label.append(noiselabel)
else:
noise_label.append(train_label[i])
print("save noisy labels to %s ..." % noise_file)
json.dump(noise_label, open(noise_file, "w"))
self.clean = (np.array(noise_label) == np.array(train_label))
if self.mode == 'all':
self.train_data = train_data
self.noise_label = noise_label
self.train_label = train_label
else:
clean = (np.array(noise_label) == np.array(train_label))
if oracle == 'negative':
pred = pred * (clean == 1) # don't take noisy
elif oracle == 'negative_shuffle':
pred_clean = (pred == 1) * (clean == 0) # shuffle labels of FP
noise_label = np.array(noise_label)
noise_label[pred_clean] = np.random.randint(0, self.num_classes, len(noise_label[pred_clean]))
elif oracle == 'positive':
pred = (pred + clean) > 0 # take all clean
elif oracle == 'all':
pred = clean # take only clean
if self.mode == "labeled":
pred_idx = pred.nonzero()[0]
self.probability = [probability[i] for i in pred_idx]
auc = roc_auc_score(clean, probability) if self.r > 0 else 1
tp, fp, fn = (np.equal(pred, clean) * (clean == 1)).sum(), \
(np.not_equal(pred, clean) * (clean == 0)).sum(), \
(np.not_equal(pred, clean) * (clean == 1)).sum()
# pc,nc = (clean==1).sum(), (clean==0).sum()
log.write('Number of labeled samples:%d\t'
'AUC:%.3f\tTP:%.3f\tFP:%.3f\tFN:%.3f\t'
'Noise in labeled dataset:%.3f\n' % (
pred.sum(), auc, tp, fp, fn, fp / (tp + fp)))
log.flush()
elif self.mode == "unlabeled":
pred_idx = (1 - pred).nonzero()[0]
self.train_data = train_data[pred_idx]
self.noise_label = [noise_label[i] for i in pred_idx]
print("%s data has a size of %d" % (self.mode, len(self.noise_label)))
def __getitem__(self, index):
if self.mode == 'labeled':
img, target, prob = self.train_data[index], self.noise_label[index], self.probability[index]
img = Image.fromarray(img)
img1 = self.transform(img)
img2 = self.transform(img)
return img1, img2, target, index, prob if self.mix_labelled else target
elif self.mode == 'unlabeled':
img = self.train_data[index]
img = Image.fromarray(img)
img1 = self.transform(img)
img2 = self.transform(img)
return img1, img2
elif self.mode == 'all':
img, target, clean = self.train_data[index], self.noise_label[index], self.train_label[index]
img = Image.fromarray(img)
img1 = self.transform(img)
img2 = self.transform(img)
return img1, img2, target, index, clean
elif self.mode == 'test':
img, target = self.test_data[index], self.test_label[index]
img = Image.fromarray(img)
img = self.transform(img)
return img, target
def __len__(self):
if self.mode != 'test':
return len(self.train_data)
else:
return len(self.test_data)
class cifar_dataloader():
def __init__(self, dataset, r, noise_mode, batch_size, num_workers, root_dir, log, noise_file='',
stronger_aug=False):
self.dataset = dataset
self.r = r
self.noise_mode = noise_mode
self.batch_size = batch_size
self.num_workers = num_workers
self.root_dir = root_dir
self.log = log
self.noise_file = noise_file
if self.dataset == 'cifar10':
self.transform_train = transforms.Compose([
transforms.RandomCrop(32, padding=4),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)),
])
self.transform_warmup = transforms.Compose([
transforms.ColorJitter(brightness=0.4, contrast=0.4, saturation=0.4, hue=0.4),
transforms.RandomCrop(32, padding=4),
transforms.RandomHorizontalFlip(),
transforms.RandomAffine(degrees=15.,
translate=(0.1, 0.1),
scale=(2. / 3, 3. / 2),
shear=(-0.1, 0.1, -0.1, 0.1)),
transforms.ToTensor(),
transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)),
])
self.transform_test = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)),
])
elif self.dataset == 'cifar100':
self.transform_train = transforms.Compose([
transforms.RandomCrop(32, padding=4),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize((0.507, 0.487, 0.441), (0.267, 0.256, 0.276)),
])
aug = transforms.Compose([
transforms.ColorJitter(brightness=0.4, contrast=0.4, saturation=0.4, hue=0.4),
transforms.RandomCrop(32, padding=4),
# transforms.Pad(4),
# transforms.RandomResizedCrop(32, scale=(0.7, 1.0), ratio=(3./4, 4./3), interpolation=2),
transforms.RandomHorizontalFlip(),
transforms.RandomAffine(degrees=15.,
translate=(0.1, 0.1),
scale=(2. / 3, 3. / 2),
shear=(-0.1, 0.1, -0.1, 0.1)),
# transforms.RandomGrayscale(p=0.25),
transforms.ToTensor(),
transforms.Normalize((0.507, 0.487, 0.441), (0.267, 0.256, 0.276)),
# transforms.RandomErasing(value='random', inplace=True),
])
self.transform_warmup = aug
self.transform_test = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.507, 0.487, 0.441), (0.267, 0.256, 0.276)),
])
self.transform_warmup = self.transform_warmup if stronger_aug else self.transform_train
self.clean = cifar_dataset(dataset=self.dataset, noise_mode=self.noise_mode, r=self.r,
root_dir=self.root_dir, transform=self.transform_warmup, mode="all",
noise_file=self.noise_file).clean
def run(self, mode, pred=[], prob=[]):
if mode == 'warmup':
all_dataset = cifar_dataset(dataset=self.dataset, noise_mode=self.noise_mode, r=self.r,
root_dir=self.root_dir, transform=self.transform_warmup, mode="all",
noise_file=self.noise_file)
trainloader = DataLoader(
dataset=all_dataset,
batch_size=self.batch_size * 2,
shuffle=True,
num_workers=self.num_workers)
return trainloader
elif mode == 'train':
labeled_dataset = cifar_dataset(dataset=self.dataset, noise_mode=self.noise_mode, r=self.r,
root_dir=self.root_dir, transform=self.transform_train, mode="labeled",
noise_file=self.noise_file, pred=pred, probability=prob, log=self.log)
labeled_trainloader = DataLoader(
dataset=labeled_dataset,
batch_size=self.batch_size,
shuffle=True,
num_workers=self.num_workers)
unlabeled_dataset = cifar_dataset(dataset=self.dataset, noise_mode=self.noise_mode, r=self.r,
root_dir=self.root_dir, transform=self.transform_train, mode="unlabeled",
noise_file=self.noise_file, pred=pred)
unlabeled_trainloader = DataLoader(
dataset=unlabeled_dataset,
batch_size=self.batch_size,
shuffle=True,
num_workers=self.num_workers)
return labeled_trainloader, unlabeled_trainloader
elif mode == 'test':
test_dataset = cifar_dataset(dataset=self.dataset, noise_mode=self.noise_mode, r=self.r,
root_dir=self.root_dir, transform=self.transform_test, mode='test')
test_loader = DataLoader(
dataset=test_dataset,
batch_size=self.batch_size,
shuffle=False,
num_workers=self.num_workers)
return test_loader
elif mode == 'eval_train':
eval_dataset = cifar_dataset(dataset=self.dataset, noise_mode=self.noise_mode, r=self.r,
root_dir=self.root_dir, transform=self.transform_test, mode='all',
noise_file=self.noise_file)
eval_loader = DataLoader(
dataset=eval_dataset,
batch_size=self.batch_size,
shuffle=False,
num_workers=self.num_workers)
return