-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathA_5025211137.R
161 lines (122 loc) · 2.95 KB
/
A_5025211137.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
library(dplyr)
library(ggplot2)
# ------------ NO 1 ---------------
# 1a
p = 0.20
x = 3
peluang <- dgeom(x, p)
peluang
# 1b
mean = mean(rgeom(n = 10000, prob = p) == 3)
# 1c
# 1d
x = 0:10
data.frame(x, prob = dgeom(x, p)) %>%
mutate(Failures = ifelse(x == 3, 3, "other")) %>%
ggplot(aes(x = factor(x), y = prob, fill = Failures)) +
geom_col() +
geom_text(
aes(label = round(prob, 2), y = prob + 0.01),
position = position_dodge(0.9),
size = 3,
vjust = 0
)
labs(title = "Peluang X = 3 gagal Sebelum Sukses Pertama",
y = "Probability")
# 1e
rataan = 1 / p
rataan
varian = (1 - p) / p^2
varian
# ------------ NO 2 ---------------
p = 0.2
nS = 20
# 2a
nA = 4
peluang = dbinom(nA, nS, p)
peluang
# 2b
x = rbinom(nA, nS, p)
hist(x, main = "Binomial Histogram", xlab = "Sembuh", ylab = "Frekuensi")
# 2c
rataan = nS * p
rataan
varian = nS * p * (1 - p)
varian
# ------------ NO 3 ---------------
# 3a
lamda = 4.5
nA = 6
p = dpois(nA, lamda)
p
# 3b
set.seed(2)
poisson_data <- data.frame('data' = rpois(365, lamda))
poisson_data %>% ggplot() +
geom_histogram(aes(x = data,
y = stat(count / sum(count)),
fill = data == nA),
binwidth = 1,
color = 'black',) +
scale_x_continuous(breaks = 0:10) +
labs(x = 'Born per period',
y = 'Proportion',
title = 'Poisson Distribution Histogram') +
theme_bw()
# 3c
# 3d
rataan = varian = lamda
rataan
varian
# ------------ NO 4 ---------------
x = 2
v = 10
# 4a
p = dchisq(x, 10)
p
# 4b
x <- rchisq(100, v)
hist(x, freq = FALSE, xlim = c(0,31), ylim = c(0,0.2), main = "Chisquare Distribution Histogram")
curve(dchisq(x, v), from = 0, to = 30, n = 100, col = "red", lwd = 2, add = TRUE)
# 4c
rataan = v
rataan
varian = v * 2
varian
# ------------ NO 5 ---------------
lamda = 3
# 5a
p = dexp(lamda, rate = 1, log = FALSE)
p
# 5b
par(mfrow = c(2,2))
set.seed(1)
hist(rexp(10, lamda), main = "Distribusi Eksponensial 10 Bilangan Random")
hist(rexp(100,lamda), main = "Distribusi Eksponensial 100 Bilangan Random")
hist(rexp(1000, lamda), main = "Distribusi Eksponensial 1000 Bilangan Random")
hist(rexp(10000, lamda), main = "Distribusi Eksponensial 10000 Bilangan Random")
# 5c
n = 100
simnum <- 100
simdata <- matrix(rexp(simnum * n, lamda), simnum)
sim_rowmean <- apply(simdata, 1, mean)
sim_var <- var(sim_rowmean)
# ------------ NO 6 ---------------
n = 100
m = 50
std = 8
# 6a
set.seed(100)
random <- rnorm(100)
rerata <- mean(random)
x1 <- floor(rerata)
x2 <- ceiling(rerata)
z1 <- (x1 - m) / std
z2 <- (x2 - m) / std
rnorm(n = 100, mean = m, sd = std)
plot(rnorm(n = 100, mean = m, sd = std))
# 6.B
hist(rnorm(n = 100, mean = m, sd = std), xlab="x", ylab="y", breaks = 50,
main = "5025211137_Kalyana_Probstat_{A}_DNhistogram")
# 6.C
varian <- std ** 2