-
Notifications
You must be signed in to change notification settings - Fork 0
/
generate_anchors.py
143 lines (105 loc) · 4.13 KB
/
generate_anchors.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
# import required libraries
import random
import numpy as np
from build_records import parse_annotations
from config import lisa_config as config
import cv2
def IOU(ann, centroids):
w, h = ann
similarities = []
for centroid in centroids:
c_w, c_h = centroid
if c_w >= w and c_h >= h:
similarity = w*h/(c_w*c_h)
elif c_w >= w and c_h <= h:
similarity = w*c_h/(w*h + (c_w-w)*c_h)
elif c_w <= w and c_h >= h:
similarity = c_w*h/(w*h + c_w*(c_h-h))
else:
# means both w,h are bigger than c_w and c_h respectively
similarity = (c_w*c_h)/(w*h)
similarities.append(similarity) # will become (k,) shape
return np.array(similarities)
def avg_IOU(anns, centroids):
n, d = anns.shape
sum = 0.
for i in range(anns.shape[0]):
sum += max(IOU(anns[i], centroids))
return sum/n
def print_anchors(centroids):
anchors = centroids.copy()
widths = anchors[:, 0]
sorted_indices = np.argsort(widths)
r = "anchors: ["
for i in sorted_indices[:-1]:
r += '%0.5f,%0.5f, ' % (anchors[i,0], anchors[i,1])
# there should not be comma after last anchor, that's why
r += '%0.5f,%0.5f' % (anchors[sorted_indices[-1:],0], anchors[sorted_indices[-1:],1])
r += "]"
print(r)
def kmeans(ann_dims, anchor_num):
ann_num = ann_dims.shape[0]
prev_assignments = np.ones(ann_num)*(-1)
iteration = 0
old_distances = np.zeros((ann_num, anchor_num))
indices = [random.randrange(ann_dims.shape[0]) for i in range(anchor_num)]
centroids = ann_dims[indices]
anchor_dim = ann_dims.shape[1]
while True:
distances = []
iteration += 1
for i in range(ann_num):
d = 1 - IOU(ann_dims[i], centroids)
distances.append(d)
distances = np.array(distances) # distances.shape = (ann_num, anchor_num)
print("iteration {}: dists = {}".format(iteration, np.sum(np.abs(old_distances-distances))))
# assign samples to centroids
assignments = np.argmin(distances,axis=1)
if (assignments == prev_assignments).all() :
return centroids
# calculate new centroids
centroid_sums = np.zeros((anchor_num, anchor_dim), np.float)
for i in range(ann_num):
centroid_sums[assignments[i]] += ann_dims[i]
for j in range(anchor_num):
centroids[j] = centroid_sums[j]/(np.sum(assignments == j) + 1e-6)
prev_assignments = assignments.copy()
old_distances = distances.copy()
def gen_anchors():
# Get the Dictionary with image paths as keys
# and labels and bb coordinates as values
D = parse_annotations()
num_anchors = config.BOXES
bounding_boxes = []
# Iterate over the list of image path
for i, k in enumerate(D.keys()):
# Read the image and extract its shape
img = cv2.imread(k)
(h, w, c) = img.shape
# Calculate the ratios of resized to original dimensions
w_ratio = config.IMAGE_W / w
h_ratio = config.IMAGE_H / h
# Calculate the grid cell width and height
grid_cell_w = config.IMAGE_W / config.GRID_S
grid_cell_h = config.IMAGE_H / config.GRID_S
# loop over the bounding boxes + labels associated with the image
for (label, (startX, startY, endX, endY)) in D[k]:
# Transform bb coordinates according to resized image
startX *= w_ratio
startY *= h_ratio
endX *= w_ratio
endY *= h_ratio
# Transform bb coord to center, w, h
c_w = abs(endX - startX)
c_h = abs(endY - endX)
# Scale the coordinates to grid cell units
c_w_grid = c_w / grid_cell_w
c_h_grid = c_h / grid_cell_h
bounding_boxes.append(tuple(map(float, (c_w_grid, c_h_grid))))
bounding_boxes = np.array(bounding_boxes)
anchors = kmeans(bounding_boxes, num_anchors)
print('\naverage IOU for', num_anchors, 'anchors:',
'%0.2f' % avg_IOU(bounding_boxes, anchors))
print_anchors(anchors)
if __name__ == '__main__':
gen_anchors()