English | 简体中文
infer.py
in this directory can help you quickly complete the inference acceleration of PP-YOLOE quantization model deployment on CPU/GPU.
-
- For the software and hardware requirements, please refer to FastDeploy Environment Requirements
-
- For the installation of FastDeploy Python whl package, please refer to FastDeploy Python Installation
-
- You can directly use the quantized model provided by FastDeploy for deployment.
-
- You can use one-click automatical compression tool provided by FastDeploy to quantize model by yourself, and use the generated quantized model for deployment.(Note: The quantized classification model still needs the infer_cfg.yml file in the FP32 model folder. Self-quantized model folder does not contain this yaml file, you can copy it from the FP32 model folder to the quantized model folder.)
# Download sample deployment code.
git clone https://github.com/PaddlePaddle/FastDeploy.git
cd /examples/vision/detection/paddledetection/quantize/python
# Download the ppyoloe_crn_l_300e_coco quantized model and test images provided by FastDeloy.
wget https://bj.bcebos.com/paddlehub/fastdeploy/ppyoloe_crn_l_300e_coco_qat.tar
tar -xvf ppyoloe_crn_l_300e_coco_qat.tar
wget https://gitee.com/paddlepaddle/PaddleDetection/raw/release/2.4/demo/000000014439.jpg
# Use ONNX Runtime inference quantization model on CPU.
python infer_ppyoloe.py --model ppyoloe_crn_l_300e_coco_qat --image 000000014439.jpg --device cpu --backend ort
# Use TensorRT inference quantization model on GPU.
python infer_ppyoloe.py --model ppyoloe_crn_l_300e_coco_qat --image 000000014439.jpg --device gpu --backend trt
# Use Paddle-TensorRT inference quantization model on GPU.
python infer_ppyoloe.py --model ppyoloe_crn_l_300e_coco_qat --image 000000014439.jpg --device gpu --backend pptrt