-
Notifications
You must be signed in to change notification settings - Fork 4
/
README.Rmd
56 lines (38 loc) · 1.37 KB
/
README.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
---
output: github_document
---
<!-- README.md is generated from README.Rmd. Please edit that file -->
```{r, echo = FALSE}
knitr::opts_chunk$set(
collapse = TRUE,
comment = "#>",
fig.path = "man/figures/README-"
)
```
[![Travis-CI Build Status](https://travis-ci.org/karchjd/gppm.svg?branch=master)](https://travis-ci.org/karchjd/gppm)
<!-- [![CRAN_Status_Badge](http://www.r-pkg.org/badges/version/ggplot2)](https://cran.r-project.org/package=ggplot2)-->
## Overview
gppm is an implementation of Gaussian process panel modeling.
## Installation
```{r, eval = FALSE}
devtools::install_github('karchjd/gppm')
```
## Examples
For examples, consult the demos. To see a list of all demos do the following:
```{r}
demo(package='gppm')
```
To run a particular example, you can do the following. Here, exemplified for 'example1linearModel':
```{r, eval=FALSE}
demo('example1linearModel',package='gppm')
```
However, the recommended approach is to look at the source directly. To locate the demo folder in which all examples resides on your computer, do the following:
```{r}
system.file("demo", package ="gppm")
```
## Learning Gaussian Process Panel Modeling
This [dissertation][diss] and this [paper][pap] describe the method.
## Getting help
Send an email to [email protected].
[diss]: https://edoc.hu-berlin.de/handle/18452/18293
[pap]: https://psyarxiv.com/kvw5y/