-
Notifications
You must be signed in to change notification settings - Fork 855
/
train.py
27 lines (21 loc) · 882 Bytes
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
"""
Train our Tokenizers on some data, just to see them in action.
The whole thing runs in ~25 seconds on my laptop.
"""
import os
import time
from minbpe import BasicTokenizer, RegexTokenizer
# open some text and train a vocab of 512 tokens
text = open("tests/taylorswift.txt", "r", encoding="utf-8").read()
# create a directory for models, so we don't pollute the current directory
os.makedirs("models", exist_ok=True)
t0 = time.time()
for TokenizerClass, name in zip([BasicTokenizer, RegexTokenizer], ["basic", "regex"]):
# construct the Tokenizer object and kick off verbose training
tokenizer = TokenizerClass()
tokenizer.train(text, 512, verbose=True)
# writes two files in the models directory: name.model, and name.vocab
prefix = os.path.join("models", name)
tokenizer.save(prefix)
t1 = time.time()
print(f"Training took {t1 - t0:.2f} seconds")