-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path2-es2015.404428f526b086fb1710.js
1 lines (1 loc) · 29 KB
/
2-es2015.404428f526b086fb1710.js
1
(window.webpackJsonp=window.webpackJsonp||[]).push([[2],{hVQG:function(l,n,u){"use strict";u.r(n);var b=u("8Y7J");class a{}var r=u("pMnS"),e=u("3ZQ1"),t=u("vKlC");class i{constructor(){}ngOnInit(){}}var p=b.pb({encapsulation:0,styles:[["h1[_ngcontent-%COMP%]{font-size:2.4rem;font-weight:500;display:inline-block;margin:8px 0}h1[_ngcontent-%COMP%], h2[_ngcontent-%COMP%], h3[_ngcontent-%COMP%], h4[_ngcontent-%COMP%], h5[_ngcontent-%COMP%], h6[_ngcontent-%COMP%]{color:#333}a[_ngcontent-%COMP%], input[_ngcontent-%COMP%], li[_ngcontent-%COMP%], ol[_ngcontent-%COMP%], p[_ngcontent-%COMP%], ul[_ngcontent-%COMP%]{font-size:1.4rem;line-height:2.4rem;letter-spacing:.3px;letter-spacing:.03rem;font-weight:400;color:#444}li[_ngcontent-%COMP%] p[_ngcontent-%COMP%]{margin:0}li[_ngcontent-%COMP%]{padding-bottom:8px}ul[_ngcontent-%COMP%]{list-style-type:square}"]],data:{}});function s(l){return b.Mb(0,[(l()(),b.rb(0,0,null,null,1,"h1",[],null,null,null,null,null)),(l()(),b.Kb(-1,null,["Natural Numbers And Whole Numbers"])),(l()(),b.rb(2,0,null,null,82,"ol",[],null,null,null,null,null)),(l()(),b.rb(3,0,null,null,7,"li",[],null,null,null,null,null)),(l()(),b.rb(4,0,null,null,2,"p",[],null,null,null,null,null)),(l()(),b.rb(5,0,null,null,1,"b",[],null,null,null,null,null)),(l()(),b.Kb(-1,null,["Natural Numbers :"])),(l()(),b.rb(7,0,null,null,1,"p",[],null,null,null,null,null)),(l()(),b.Kb(-1,null,["Natural numbers are denoted by 'N'.numbers starting from '1 ' (one). "])),(l()(),b.rb(9,0,null,null,1,"p",[],null,null,null,null,null)),(l()(),b.Kb(10,null,["N = ",""])),(l()(),b.rb(11,0,null,null,7,"li",[],null,null,null,null,null)),(l()(),b.rb(12,0,null,null,2,"p",[],null,null,null,null,null)),(l()(),b.rb(13,0,null,null,1,"b",[],null,null,null,null,null)),(l()(),b.Kb(-1,null,["Whole Numbers :"])),(l()(),b.rb(15,0,null,null,1,"p",[],null,null,null,null,null)),(l()(),b.Kb(-1,null,["Whole numbers are denoted by 'W'.numbers starting from '0' (zero)."])),(l()(),b.rb(17,0,null,null,1,"p",[],null,null,null,null,null)),(l()(),b.Kb(18,null,[" W = ",""])),(l()(),b.rb(19,0,null,null,7,"li",[],null,null,null,null,null)),(l()(),b.rb(20,0,null,null,2,"p",[],null,null,null,null,null)),(l()(),b.rb(21,0,null,null,1,"b",[],null,null,null,null,null)),(l()(),b.Kb(-1,null,["Even Numbers :"])),(l()(),b.rb(23,0,null,null,1,"p",[],null,null,null,null,null)),(l()(),b.Kb(-1,null,[" Numbers which are the multiples of '2' are called 'Even Numbers '."])),(l()(),b.rb(25,0,null,null,1,"p",[],null,null,null,null,null)),(l()(),b.Kb(26,null,[" E = ",""])),(l()(),b.rb(27,0,null,null,7,"li",[],null,null,null,null,null)),(l()(),b.rb(28,0,null,null,2,"p",[],null,null,null,null,null)),(l()(),b.rb(29,0,null,null,1,"b",[],null,null,null,null,null)),(l()(),b.Kb(-1,null,["Odd Numbers :"])),(l()(),b.rb(31,0,null,null,1,"p",[],null,null,null,null,null)),(l()(),b.Kb(-1,null,[" Numbers which are not the multiples of '2' are called 'Odd Numbers'."])),(l()(),b.rb(33,0,null,null,1,"p",[],null,null,null,null,null)),(l()(),b.Kb(34,null,[" Odd = ",""])),(l()(),b.rb(35,0,null,null,2,"li",[],null,null,null,null,null)),(l()(),b.rb(36,0,null,null,1,"p",[],null,null,null,null,null)),(l()(),b.Kb(-1,null,[" The smallest Natural Number is '1 ' and the smallest Whole Number is '0'."])),(l()(),b.rb(38,0,null,null,2,"li",[],null,null,null,null,null)),(l()(),b.rb(39,0,null,null,1,"p",[],null,null,null,null,null)),(l()(),b.Kb(-1,null,[" There do not exist the largest Natural number and the largest Whole number."])),(l()(),b.rb(41,0,null,null,7,"li",[],null,null,null,null,null)),(l()(),b.rb(42,0,null,null,1,"p",[],null,null,null,null,null)),(l()(),b.Kb(-1,null,["The successor of any whole number is one more than that whole number."])),(l()(),b.rb(44,0,null,null,4,"p",[],null,null,null,null,null)),(l()(),b.Kb(-1,null,[" Ex : Successor of 11 is 12, "])),(l()(),b.rb(46,0,null,null,2,"app-math-jax",[],null,null,null,e.b,e.a)),b.qb(47,4308992,null,0,t.a,[],null,null),(l()(),b.Kb(-1,0,["(11 + 1)"])),(l()(),b.rb(49,0,null,null,7,"li",[],null,null,null,null,null)),(l()(),b.rb(50,0,null,null,1,"p",[],null,null,null,null,null)),(l()(),b.Kb(-1,null,["The predecessor of any whole number is one less than that whole number."])),(l()(),b.rb(52,0,null,null,4,"p",[],null,null,null,null,null)),(l()(),b.Kb(-1,null,[" Ex : Predecessor of 11 is 10 "])),(l()(),b.rb(54,0,null,null,2,"app-math-jax",[],null,null,null,e.b,e.a)),b.qb(55,4308992,null,0,t.a,[],null,null),(l()(),b.Kb(-1,0,["(11 - 1)"])),(l()(),b.rb(57,0,null,null,2,"li",[],null,null,null,null,null)),(l()(),b.rb(58,0,null,null,1,"p",[],null,null,null,null,null)),(l()(),b.Kb(-1,null,["There is no predecessor of zero in whole numbers."])),(l()(),b.rb(60,0,null,null,16,"li",[],null,null,null,null,null)),(l()(),b.rb(61,0,null,null,1,"p",[],null,null,null,null,null)),(l()(),b.Kb(-1,null,["Face value and place value :"])),(l()(),b.rb(63,0,null,null,13,"ul",[],null,null,null,null,null)),(l()(),b.rb(64,0,null,null,4,"li",[],null,null,null,null,null)),(l()(),b.rb(65,0,null,null,1,"p",[],null,null,null,null,null)),(l()(),b.Kb(-1,null,["Face value of a digit is the digit itsell "])),(l()(),b.rb(67,0,null,null,1,"p",[],null,null,null,null,null)),(l()(),b.Kb(-1,null,["Ex.: Face value of '5' in 325 is '5' "])),(l()(),b.rb(69,0,null,null,7,"li",[],null,null,null,null,null)),(l()(),b.rb(70,0,null,null,1,"p",[],null,null,null,null,null)),(l()(),b.Kb(-1,null,["Place value of a digit is the value of the digit in its place."])),(l()(),b.rb(72,0,null,null,4,"p",[],null,null,null,null,null)),(l()(),b.Kb(-1,null,[" Ex. : Place value of '5' in 352 is 50 "])),(l()(),b.rb(74,0,null,null,2,"app-math-jax",[],null,null,null,e.b,e.a)),b.qb(75,4308992,null,0,t.a,[],null,null),(l()(),b.Kb(-1,0,["[5 \\times 10]"])),(l()(),b.rb(77,0,null,null,7,"li",[],null,null,null,null,null)),(l()(),b.rb(78,0,null,null,2,"p",[],null,null,null,null,null)),(l()(),b.rb(79,0,null,null,1,"b",[],null,null,null,null,null)),(l()(),b.Kb(-1,null,["Consecutive Numbers :"])),(l()(),b.rb(81,0,null,null,1,"p",[],null,null,null,null,null)),(l()(),b.Kb(-1,null,["The Numbers which differ from each other by one are called 'Consecutive Numbers'."])),(l()(),b.rb(83,0,null,null,1,"p",[],null,null,null,null,null)),(l()(),b.Kb(-1,null,[" Ex. : 13, 14 and 19, 20 are consecutive numbers"])),(l()(),b.rb(85,0,null,null,1,"h1",[],null,null,null,null,null)),(l()(),b.Kb(-1,null,["Properties Of Natural Numbers and Whole Numbers"])),(l()(),b.rb(87,0,null,null,133,"ol",[],null,null,null,null,null)),(l()(),b.rb(88,0,null,null,1,"p",[],null,null,null,null,null)),(l()(),b.Kb(-1,null,["Let a, b and c be any three Whole Numbers. Then"])),(l()(),b.rb(90,0,null,null,26,"li",[],null,null,null,null,null)),(l()(),b.rb(91,0,null,null,2,"p",[],null,null,null,null,null)),(l()(),b.rb(92,0,null,null,1,"b",[],null,null,null,null,null)),(l()(),b.Kb(-1,null,["Closure Property :"])),(l()(),b.rb(94,0,null,null,22,"ul",[],null,null,null,null,null)),(l()(),b.rb(95,0,null,null,10,"li",[],null,null,null,null,null)),(l()(),b.rb(96,0,null,null,4,"p",[],null,null,null,null,null)),(l()(),b.rb(97,0,null,null,2,"app-math-jax",[],null,null,null,e.b,e.a)),b.qb(98,4308992,null,0,t.a,[],null,null),(l()(),b.Kb(-1,0,["a + b"])),(l()(),b.Kb(-1,null,[" is a whole number "])),(l()(),b.rb(101,0,null,null,4,"p",[],null,null,null,null,null)),(l()(),b.rb(102,0,null,null,2,"app-math-jax",[],null,null,null,e.b,e.a)),b.qb(103,4308992,null,0,t.a,[],null,null),(l()(),b.Kb(-1,0,[" Ex: 3 + 4 = 7"])),(l()(),b.Kb(-1,null,[" is a whole number "])),(l()(),b.rb(106,0,null,null,10,"li",[],null,null,null,null,null)),(l()(),b.rb(107,0,null,null,4,"p",[],null,null,null,null,null)),(l()(),b.rb(108,0,null,null,2,"app-math-jax",[],null,null,null,e.b,e.a)),b.qb(109,4308992,null,0,t.a,[],null,null),(l()(),b.Kb(-1,0,["a \\times b"])),(l()(),b.Kb(-1,null,[" is a whole number "])),(l()(),b.rb(112,0,null,null,4,"p",[],null,null,null,null,null)),(l()(),b.rb(113,0,null,null,2,"app-math-jax",[],null,null,null,e.b,e.a)),b.qb(114,4308992,null,0,t.a,[],null,null),(l()(),b.Kb(-1,0,[" Ex: 3 \\times 4 = 12"])),(l()(),b.Kb(-1,null,[" is a whole number "])),(l()(),b.rb(117,0,null,null,22,"li",[],null,null,null,null,null)),(l()(),b.rb(118,0,null,null,2,"p",[],null,null,null,null,null)),(l()(),b.rb(119,0,null,null,1,"b",[],null,null,null,null,null)),(l()(),b.Kb(-1,null,["Commutative Property :"])),(l()(),b.rb(121,0,null,null,18,"ul",[],null,null,null,null,null)),(l()(),b.rb(122,0,null,null,8,"li",[],null,null,null,null,null)),(l()(),b.rb(123,0,null,null,3,"p",[],null,null,null,null,null)),(l()(),b.rb(124,0,null,null,2,"app-math-jax",[],null,null,null,e.b,e.a)),b.qb(125,4308992,null,0,t.a,[],null,null),(l()(),b.Kb(-1,0,["a + b = b + a "])),(l()(),b.rb(127,0,null,null,3,"p",[],null,null,null,null,null)),(l()(),b.rb(128,0,null,null,2,"app-math-jax",[],null,null,null,e.b,e.a)),b.qb(129,4308992,null,0,t.a,[],null,null),(l()(),b.Kb(-1,0,[" Ex: 4 + 5 = 5 + 4 = 9"])),(l()(),b.rb(131,0,null,null,8,"li",[],null,null,null,null,null)),(l()(),b.rb(132,0,null,null,3,"p",[],null,null,null,null,null)),(l()(),b.rb(133,0,null,null,2,"app-math-jax",[],null,null,null,e.b,e.a)),b.qb(134,4308992,null,0,t.a,[],null,null),(l()(),b.Kb(-1,0,["a \\times b = b \\times a "])),(l()(),b.rb(136,0,null,null,3,"p",[],null,null,null,null,null)),(l()(),b.rb(137,0,null,null,2,"app-math-jax",[],null,null,null,e.b,e.a)),b.qb(138,4308992,null,0,t.a,[],null,null),(l()(),b.Kb(-1,0,[" Ex: 4 \\times 5 = 5 \\times 4 = 20"])),(l()(),b.rb(140,0,null,null,22,"li",[],null,null,null,null,null)),(l()(),b.rb(141,0,null,null,2,"p",[],null,null,null,null,null)),(l()(),b.rb(142,0,null,null,1,"b",[],null,null,null,null,null)),(l()(),b.Kb(-1,null,["Associative Property :"])),(l()(),b.rb(144,0,null,null,18,"ul",[],null,null,null,null,null)),(l()(),b.rb(145,0,null,null,8,"li",[],null,null,null,null,null)),(l()(),b.rb(146,0,null,null,3,"p",[],null,null,null,null,null)),(l()(),b.rb(147,0,null,null,2,"app-math-jax",[],null,null,null,e.b,e.a)),b.qb(148,4308992,null,0,t.a,[],null,null),(l()(),b.Kb(-1,0,["a + (b + c) = (a + b) + c "])),(l()(),b.rb(150,0,null,null,3,"p",[],null,null,null,null,null)),(l()(),b.rb(151,0,null,null,2,"app-math-jax",[],null,null,null,e.b,e.a)),b.qb(152,4308992,null,0,t.a,[],null,null),(l()(),b.Kb(-1,0,[" Ex: 3 + (4 + 5) = (3 + 4) + 5 = 12"])),(l()(),b.rb(154,0,null,null,8,"li",[],null,null,null,null,null)),(l()(),b.rb(155,0,null,null,3,"p",[],null,null,null,null,null)),(l()(),b.rb(156,0,null,null,2,"app-math-jax",[],null,null,null,e.b,e.a)),b.qb(157,4308992,null,0,t.a,[],null,null),(l()(),b.Kb(-1,0,["a \\times (b \\times c) = (a \\times b) \\times c "])),(l()(),b.rb(159,0,null,null,3,"p",[],null,null,null,null,null)),(l()(),b.rb(160,0,null,null,2,"app-math-jax",[],null,null,null,e.b,e.a)),b.qb(161,4308992,null,0,t.a,[],null,null),(l()(),b.Kb(-1,0,[" Ex: 3 \\times (4 \\times 5) = (3 \\times 4) \\times 5 = 60"])),(l()(),b.rb(163,0,null,null,22,"li",[],null,null,null,null,null)),(l()(),b.rb(164,0,null,null,2,"p",[],null,null,null,null,null)),(l()(),b.rb(165,0,null,null,1,"b",[],null,null,null,null,null)),(l()(),b.Kb(-1,null,["Distributive Property :"])),(l()(),b.rb(167,0,null,null,18,"ul",[],null,null,null,null,null)),(l()(),b.rb(168,0,null,null,8,"li",[],null,null,null,null,null)),(l()(),b.rb(169,0,null,null,3,"p",[],null,null,null,null,null)),(l()(),b.rb(170,0,null,null,2,"app-math-jax",[],null,null,null,e.b,e.a)),b.qb(171,4308992,null,0,t.a,[],null,null),(l()(),b.Kb(-1,0,["a \\times (b + c) = (a \\times b) + (a \\times c) "])),(l()(),b.rb(173,0,null,null,3,"p",[],null,null,null,null,null)),(l()(),b.rb(174,0,null,null,2,"app-math-jax",[],null,null,null,e.b,e.a)),b.qb(175,4308992,null,0,t.a,[],null,null),(l()(),b.Kb(-1,0,[" Ex: 3 \\times (4 + 5) = (3 \\times 4) + (3 \\times 5) = 27"])),(l()(),b.rb(177,0,null,null,8,"li",[],null,null,null,null,null)),(l()(),b.rb(178,0,null,null,3,"p",[],null,null,null,null,null)),(l()(),b.rb(179,0,null,null,2,"app-math-jax",[],null,null,null,e.b,e.a)),b.qb(180,4308992,null,0,t.a,[],null,null),(l()(),b.Kb(-1,0,["a \\times (b - c) = (a \\times b) - (a \\times c) "])),(l()(),b.rb(182,0,null,null,3,"p",[],null,null,null,null,null)),(l()(),b.rb(183,0,null,null,2,"app-math-jax",[],null,null,null,e.b,e.a)),b.qb(184,4308992,null,0,t.a,[],null,null),(l()(),b.Kb(-1,0,[" Ex: 3 \\times (5 - 4) = (3 \\times 5) - (3 \\times 4) = 3"])),(l()(),b.rb(186,0,null,null,34,"li",[],null,null,null,null,null)),(l()(),b.rb(187,0,null,null,33,"ul",[],null,null,null,null,null)),(l()(),b.rb(188,0,null,null,3,"li",[],null,null,null,null,null)),(l()(),b.rb(189,0,null,null,2,"app-math-jax",[],null,null,null,e.b,e.a)),b.qb(190,4308992,null,0,t.a,[],null,null),(l()(),b.Kb(-1,0,["a + 0 = 0 + a = a"])),(l()(),b.rb(192,0,null,null,3,"li",[],null,null,null,null,null)),(l()(),b.rb(193,0,null,null,2,"app-math-jax",[],null,null,null,e.b,e.a)),b.qb(194,4308992,null,0,t.a,[],null,null),(l()(),b.Kb(-1,0,["a - 0 = a"])),(l()(),b.rb(196,0,null,null,3,"li",[],null,null,null,null,null)),(l()(),b.rb(197,0,null,null,2,"app-math-jax",[],null,null,null,e.b,e.a)),b.qb(198,4308992,null,0,t.a,[],null,null),(l()(),b.Kb(-1,0,["a \\times 1 = 1 \\times a = a"])),(l()(),b.rb(200,0,null,null,3,"li",[],null,null,null,null,null)),(l()(),b.rb(201,0,null,null,2,"app-math-jax",[],null,null,null,e.b,e.a)),b.qb(202,4308992,null,0,t.a,[],null,null),(l()(),b.Kb(-1,0,["a + 1 = a"])),(l()(),b.rb(204,0,null,null,3,"li",[],null,null,null,null,null)),(l()(),b.rb(205,0,null,null,2,"app-math-jax",[],null,null,null,e.b,e.a)),b.qb(206,4308992,null,0,t.a,[],null,null),(l()(),b.Kb(-1,0,["a - b \\neq b - a"])),(l()(),b.rb(208,0,null,null,3,"li",[],null,null,null,null,null)),(l()(),b.rb(209,0,null,null,2,"app-math-jax",[],null,null,null,e.b,e.a)),b.qb(210,4308992,null,0,t.a,[],null,null),(l()(),b.Kb(-1,0,["a \\times 0 = 0 \\times a = 0"])),(l()(),b.rb(212,0,null,null,8,"li",[],null,null,null,null,null)),(l()(),b.rb(213,0,null,null,2,"app-math-jax",[],null,null,null,e.b,e.a)),b.qb(214,4308992,null,0,t.a,[],null,null),(l()(),b.Kb(-1,0,["0 + a = 0 "])),(l()(),b.Kb(-1,null,[" and "])),(l()(),b.rb(217,0,null,null,2,"app-math-jax",[],null,null,null,e.b,e.a)),b.qb(218,4308992,null,0,t.a,[],null,null),(l()(),b.Kb(219,0,["",""])),(l()(),b.Kb(-1,null,[" is not defined. "])),(l()(),b.rb(221,0,null,null,1,"h1",[],null,null,null,null,null)),(l()(),b.Kb(-1,null,["Integers"])),(l()(),b.rb(223,0,null,null,91,"ol",[],null,null,null,null,null)),(l()(),b.rb(224,0,null,null,14,"li",[],null,null,null,null,null)),(l()(),b.rb(225,0,null,null,2,"p",[],null,null,null,null,null)),(l()(),b.rb(226,0,null,null,1,"b",[],null,null,null,null,null)),(l()(),b.Kb(-1,null,["Integers :"])),(l()(),b.rb(228,0,null,null,1,"p",[],null,null,null,null,null)),(l()(),b.Kb(-1,null,[" Integers are the collection of all the Natural numbers with both positive and negative sign along with zero. "])),(l()(),b.rb(230,0,null,null,8,"ul",[],null,null,null,null,null)),(l()(),b.rb(231,0,null,null,1,"li",[],null,null,null,null,null)),(l()(),b.Kb(232,null,[" Integers = "," "])),(l()(),b.rb(233,0,null,null,1,"li",[],null,null,null,null,null)),(l()(),b.Kb(234,null,[" Positive Integers = "," "])),(l()(),b.rb(235,0,null,null,1,"li",[],null,null,null,null,null)),(l()(),b.Kb(236,null,[" Negative Integers = "," "])),(l()(),b.rb(237,0,null,null,1,"li",[],null,null,null,null,null)),(l()(),b.Kb(-1,null,[" Zero is neither positive nor negative. "])),(l()(),b.rb(239,0,null,null,9,"li",[],null,null,null,null,null)),(l()(),b.rb(240,0,null,null,2,"p",[],null,null,null,null,null)),(l()(),b.rb(241,0,null,null,1,"b",[],null,null,null,null,null)),(l()(),b.Kb(-1,null,["Absolute Value :"])),(l()(),b.rb(243,0,null,null,1,"p",[],null,null,null,null,null)),(l()(),b.Kb(-1,null,[" The absolute value ofan integer is the numerical value (magnitude) irrespective of its sign."])),(l()(),b.rb(245,0,null,null,3,"p",[],null,null,null,null,null)),(l()(),b.rb(246,0,null,null,2,"app-math-jax",[],null,null,null,e.b,e.a)),b.qb(247,4308992,null,0,t.a,[],null,null),(l()(),b.Kb(-1,0,[" Ex: \\lvert 6 \\rvert=6\\, and\\, \\lvert -6 \\rvert=6"])),(l()(),b.rb(249,0,null,null,9,"li",[],null,null,null,null,null)),(l()(),b.rb(250,0,null,null,2,"p",[],null,null,null,null,null)),(l()(),b.rb(251,0,null,null,1,"b",[],null,null,null,null,null)),(l()(),b.Kb(-1,null,[" Closure Property : "])),(l()(),b.rb(253,0,null,null,1,"p",[],null,null,null,null,null)),(l()(),b.Kb(-1,null,[" If 'a' and 'b' are any two integers then a + b is also an integer. "])),(l()(),b.rb(255,0,null,null,3,"p",[],null,null,null,null,null)),(l()(),b.rb(256,0,null,null,2,"app-math-jax",[],null,null,null,e.b,e.a)),b.qb(257,4308992,null,0,t.a,[],null,null),(l()(),b.Kb(-1,0,[" Ex: 4 + 5 = 9 \\,and\\, 4 + (-5) = -1 "])),(l()(),b.rb(259,0,null,null,13,"li",[],null,null,null,null,null)),(l()(),b.rb(260,0,null,null,12,"ul",[],null,null,null,null,null)),(l()(),b.rb(261,0,null,null,5,"li",[],null,null,null,null,null)),(l()(),b.Kb(-1,null,[" '0' is the identity element in addition. "])),(l()(),b.rb(263,0,null,null,3,"p",[],null,null,null,null,null)),(l()(),b.rb(264,0,null,null,2,"app-math-jax",[],null,null,null,e.b,e.a)),b.qb(265,4308992,null,0,t.a,[],null,null),(l()(),b.Kb(-1,0,[" Ex: 5 + 0 = 5 \\,and\\, -5 + 0 = -5 "])),(l()(),b.rb(267,0,null,null,5,"li",[],null,null,null,null,null)),(l()(),b.Kb(-1,null,[" '1' is the identity element in multiplication "])),(l()(),b.rb(269,0,null,null,3,"p",[],null,null,null,null,null)),(l()(),b.rb(270,0,null,null,2,"app-math-jax",[],null,null,null,e.b,e.a)),b.qb(271,4308992,null,0,t.a,[],null,null),(l()(),b.Kb(-1,0,[" Ex: 5 \\times 1 = 1 \\times 5 = 5 \\,and\\, -5 \\times 1 = -5 "])),(l()(),b.rb(273,0,null,null,20,"li",[],null,null,null,null,null)),(l()(),b.rb(274,0,null,null,2,"p",[],null,null,null,null,null)),(l()(),b.rb(275,0,null,null,1,"b",[],null,null,null,null,null)),(l()(),b.Kb(-1,null,[" Inverse :"])),(l()(),b.rb(277,0,null,null,16,"ul",[],null,null,null,null,null)),(l()(),b.rb(278,0,null,null,4,"li",[],null,null,null,null,null)),(l()(),b.rb(279,0,null,null,1,"p",[],null,null,null,null,null)),(l()(),b.Kb(-1,null,["The additive inverse of any integer 'a' is '-a'. "])),(l()(),b.rb(281,0,null,null,1,"p",[],null,null,null,null,null)),(l()(),b.Kb(-1,null,[" Ex: The additive inverse of 4 is -4 "])),(l()(),b.rb(283,0,null,null,10,"li",[],null,null,null,null,null)),(l()(),b.rb(284,0,null,null,4,"p",[],null,null,null,null,null)),(l()(),b.Kb(-1,null,[" The multiplicative inverse of any integer 'a' is "])),(l()(),b.rb(286,0,null,null,2,"app-math-jax",[],null,null,null,e.b,e.a)),b.qb(287,4308992,null,0,t.a,[],null,null),(l()(),b.Kb(288,0,[""," \\,\\, (a \\neq 0) "])),(l()(),b.rb(289,0,null,null,4,"p",[],null,null,null,null,null)),(l()(),b.Kb(-1,null,[" Ex : The multiplicative inverse of 4 is "])),(l()(),b.rb(291,0,null,null,2,"app-math-jax",[],null,null,null,e.b,e.a)),b.qb(292,4308992,null,0,t.a,[],null,null),(l()(),b.Kb(293,0,["",""])),(l()(),b.rb(294,0,null,null,9,"li",[],null,null,null,null,null)),(l()(),b.rb(295,0,null,null,2,"p",[],null,null,null,null,null)),(l()(),b.rb(296,0,null,null,1,"b",[],null,null,null,null,null)),(l()(),b.Kb(-1,null,[" Number line :"])),(l()(),b.rb(298,0,null,null,1,"p",[],null,null,null,null,null)),(l()(),b.Kb(-1,null,["Every whole number on the right of the number line is greater than every whole number to its left."])),(l()(),b.rb(300,0,null,null,3,"p",[],null,null,null,null,null)),(l()(),b.rb(301,0,null,null,2,"app-math-jax",[],null,null,null,e.b,e.a)),b.qb(302,4308992,null,0,t.a,[],null,null),(l()(),b.Kb(-1,0,["Ex. 5 > 0; 5 > 1; 5 > -3; -3 > -4; 0 > -2"])),(l()(),b.rb(304,0,null,null,10,"li",[],null,null,null,null,null)),(l()(),b.rb(305,0,null,null,9,"ul",[],null,null,null,null,null)),(l()(),b.rb(306,0,null,null,2,"li",[],null,null,null,null,null)),(l()(),b.rb(307,0,null,null,1,"p",[],null,null,null,null,null)),(l()(),b.Kb(-1,null,["Every positive integer is greater than every negative integer."])),(l()(),b.rb(309,0,null,null,2,"li",[],null,null,null,null,null)),(l()(),b.rb(310,0,null,null,1,"p",[],null,null,null,null,null)),(l()(),b.Kb(-1,null,["Zero is less than every positive integer."])),(l()(),b.rb(312,0,null,null,2,"li",[],null,null,null,null,null)),(l()(),b.rb(313,0,null,null,1,"p",[],null,null,null,null,null)),(l()(),b.Kb(-1,null,["Zero is greater than every negative integer."])),(l()(),b.rb(315,0,null,null,1,"h1",[],null,null,null,null,null)),(l()(),b.Kb(-1,null,[" RATIONAL NUMBERS "])),(l()(),b.rb(317,0,null,null,76,"ol",[],null,null,null,null,null)),(l()(),b.rb(318,0,null,null,17,"li",[],null,null,null,null,null)),(l()(),b.rb(319,0,null,null,2,"p",[],null,null,null,null,null)),(l()(),b.rb(320,0,null,null,1,"b",[],null,null,null,null,null)),(l()(),b.Kb(-1,null,["Rational Number :"])),(l()(),b.rb(322,0,null,null,9,"p",[],null,null,null,null,null)),(l()(),b.Kb(-1,null,[" A number which can be expressed in the form "])),(l()(),b.rb(324,0,null,null,2,"app-math-jax",[],null,null,null,e.b,e.a)),b.qb(325,4308992,null,0,t.a,[],null,null),(l()(),b.Kb(326,0,["",""])),(l()(),b.Kb(-1,null,[" where 'p' and 'q' are integers and "])),(l()(),b.rb(328,0,null,null,2,"app-math-jax",[],null,null,null,e.b,e.a)),b.qb(329,4308992,null,0,t.a,[],null,null),(l()(),b.Kb(-1,0,["\\,(q \\neq 0)"])),(l()(),b.Kb(-1,null,[" is called a Rational number. "])),(l()(),b.rb(332,0,null,null,3,"p",[],null,null,null,null,null)),(l()(),b.rb(333,0,null,null,2,"app-math-jax",[],null,null,null,e.b,e.a)),b.qb(334,4308992,null,0,t.a,[],null,null),(l()(),b.Kb(335,0,["Ex: "," ","\\,and\\,"," "])),(l()(),b.rb(336,0,null,null,13,"li",[],null,null,null,null,null)),(l()(),b.rb(337,0,null,null,1,"p",[],null,null,null,null,null)),(l()(),b.Kb(-1,null,[" Rational Numbers satisfy the "])),(l()(),b.rb(339,0,null,null,8,"ul",[],null,null,null,null,null)),(l()(),b.rb(340,0,null,null,1,"li",[],null,null,null,null,null)),(l()(),b.Kb(-1,null,["(i) Closure property."])),(l()(),b.rb(342,0,null,null,1,"li",[],null,null,null,null,null)),(l()(),b.Kb(-1,null,[" (ii) Commutative property."])),(l()(),b.rb(344,0,null,null,1,"li",[],null,null,null,null,null)),(l()(),b.Kb(-1,null,["(iii) Associative property."])),(l()(),b.rb(346,0,null,null,1,"li",[],null,null,null,null,null)),(l()(),b.Kb(-1,null,[" (iv) Distributive property."])),(l()(),b.rb(348,0,null,null,1,"p",[],null,null,null,null,null)),(l()(),b.Kb(-1,null,["as in the case of Natural numbers and Integers."])),(l()(),b.rb(350,0,null,null,16,"li",[],null,null,null,null,null)),(l()(),b.rb(351,0,null,null,2,"p",[],null,null,null,null,null)),(l()(),b.rb(352,0,null,null,1,"b",[],null,null,null,null,null)),(l()(),b.Kb(-1,null,["Reciprocal :"])),(l()(),b.rb(354,0,null,null,8,"p",[],null,null,null,null,null)),(l()(),b.Kb(-1,null,[" Reciprocal of a rational number "])),(l()(),b.rb(356,0,null,null,2,"app-math-jax",[],null,null,null,e.b,e.a)),b.qb(357,4308992,null,0,t.a,[],null,null),(l()(),b.Kb(358,0,["",""])),(l()(),b.Kb(-1,null,[" is "])),(l()(),b.rb(360,0,null,null,2,"app-math-jax",[],null,null,null,e.b,e.a)),b.qb(361,4308992,null,0,t.a,[],null,null),(l()(),b.Kb(362,0,[" ",""])),(l()(),b.rb(363,0,null,null,3,"p",[],null,null,null,null,null)),(l()(),b.rb(364,0,null,null,2,"app-math-jax",[],null,null,null,e.b,e.a)),b.qb(365,4308992,null,0,t.a,[],null,null),(l()(),b.Kb(366,0,["Ex: Reciprocals of "," is ","\\, , \\,"," is "," "])),(l()(),b.rb(367,0,null,null,6,"li",[],null,null,null,null,null)),(l()(),b.rb(368,0,null,null,1,"p",[],null,null,null,null,null)),(l()(),b.Kb(-1,null,["The product of a rational number and its reciprocal is '1'. "])),(l()(),b.rb(370,0,null,null,3,"p",[],null,null,null,null,null)),(l()(),b.rb(371,0,null,null,2,"app-math-jax",[],null,null,null,e.b,e.a)),b.qb(372,4308992,null,0,t.a,[],null,null),(l()(),b.Kb(373,0,["Ex: "," \\times "," = 1\\, , "," \\times "," = 1 "])),(l()(),b.rb(374,0,null,null,19,"li",[],null,null,null,null,null)),(l()(),b.rb(375,0,null,null,5,"p",[],null,null,null,null,null)),(l()(),b.Kb(-1,null,[" If 'x' and 'y' are any two rational numbers, then "])),(l()(),b.rb(377,0,null,null,2,"app-math-jax",[],null,null,null,e.b,e.a)),b.qb(378,4308992,null,0,t.a,[],null,null),(l()(),b.Kb(379,0,[""," "])),(l()(),b.Kb(-1,null,[" is a rational number between 'x' and 'y'."])),(l()(),b.rb(381,0,null,null,12,"p",[],null,null,null,null,null)),(l()(),b.Kb(-1,null,["Ex : Let "])),(l()(),b.rb(383,0,null,null,2,"app-math-jax",[],null,null,null,e.b,e.a)),b.qb(384,4308992,null,0,t.a,[],null,null),(l()(),b.Kb(385,0,[""," and ",""])),(l()(),b.Kb(-1,null,[" and be any two rational numbers, then "])),(l()(),b.rb(387,0,null,null,2,"app-math-jax",[],null,null,null,e.b,e.a)),b.qb(388,4308992,null,0,t.a,[],null,null),(l()(),b.Kb(389,0,[""," "])),(l()(),b.Kb(-1,null,[" is a rational number between "])),(l()(),b.rb(391,0,null,null,2,"app-math-jax",[],null,null,null,e.b,e.a)),b.qb(392,4308992,null,0,t.a,[],null,null),(l()(),b.Kb(393,0,[""," and "," "])),(l()(),b.rb(394,0,null,null,1,"h1",[],null,null,null,null,null)),(l()(),b.Kb(-1,null,["Decimal Representation of Rational Numbers"])),(l()(),b.rb(396,0,null,null,40,"ol",[],null,null,null,null,null)),(l()(),b.rb(397,0,null,null,7,"li",[],null,null,null,null,null)),(l()(),b.rb(398,0,null,null,1,"p",[],null,null,null,null,null)),(l()(),b.Kb(-1,null,[" Every rational number can be expressed as a decimal."])),(l()(),b.rb(400,0,null,null,4,"p",[],null,null,null,null,null)),(l()(),b.Kb(-1,null,[" Ex : "])),(l()(),b.rb(402,0,null,null,2,"app-math-jax",[],null,null,null,e.b,e.a)),b.qb(403,4308992,null,0,t.a,[],null,null),(l()(),b.Kb(404,0,["",""])),(l()(),b.rb(405,0,null,null,23,"li",[],null,null,null,null,null)),(l()(),b.rb(406,0,null,null,1,"p",[],null,null,null,null,null)),(l()(),b.Kb(-1,null,[" Terminating and non-terminating decimals."])),(l()(),b.rb(408,0,null,null,20,"ul",[],null,null,null,null,null)),(l()(),b.rb(409,0,null,null,7,"li",[],null,null,null,null,null)),(l()(),b.rb(410,0,null,null,1,"p",[],null,null,null,null,null)),(l()(),b.Kb(-1,null,["Numbers with a finite decimal part are known as finite or terminating decimals."])),(l()(),b.rb(412,0,null,null,4,"p",[],null,null,null,null,null)),(l()(),b.Kb(-1,null,[" Ex : "])),(l()(),b.rb(414,0,null,null,2,"app-math-jax",[],null,null,null,e.b,e.a)),b.qb(415,4308992,null,0,t.a,[],null,null),(l()(),b.Kb(416,0,["",""])),(l()(),b.rb(417,0,null,null,11,"li",[],null,null,null,null,null)),(l()(),b.rb(418,0,null,null,1,"p",[],null,null,null,null,null)),(l()(),b.Kb(-1,null,["Numbers with infinite decimal part are known as non-terminating decimals."])),(l()(),b.rb(420,0,null,null,8,"p",[],null,null,null,null,null)),(l()(),b.Kb(-1,null,[" Ex : "])),(l()(),b.rb(422,0,null,null,2,"app-math-jax",[],null,null,null,e.b,e.a)),b.qb(423,4308992,null,0,t.a,[],null,null),(l()(),b.Kb(424,0,["",""])),(l()(),b.Kb(-1,null,[" This can be expressed as "])),(l()(),b.rb(426,0,null,null,2,"app-math-jax",[],null,null,null,e.b,e.a)),b.qb(427,4308992,null,0,t.a,[],null,null),(l()(),b.Kb(-1,0,["= 0.\\bar3"])),(l()(),b.rb(429,0,null,null,7,"li",[],null,null,null,null,null)),(l()(),b.rb(430,0,null,null,1,"p",[],null,null,null,null,null)),(l()(),b.Kb(-1,null,[" Representation of numbers in scientific notation. "])),(l()(),b.rb(432,0,null,null,4,"p",[],null,null,null,null,null)),(l()(),b.Kb(-1,null,[" Ex : "])),(l()(),b.rb(434,0,null,null,2,"app-math-jax",[],null,null,null,e.b,e.a)),b.qb(435,4308992,null,0,t.a,[],null,null),(l()(),b.Kb(436,0,[" "," "]))],function(l,n){l(n,47,0),l(n,55,0),l(n,75,0),l(n,98,0),l(n,103,0),l(n,109,0),l(n,114,0),l(n,125,0),l(n,129,0),l(n,134,0),l(n,138,0),l(n,148,0),l(n,152,0),l(n,157,0),l(n,161,0),l(n,171,0),l(n,175,0),l(n,180,0),l(n,184,0),l(n,190,0),l(n,194,0),l(n,198,0),l(n,202,0),l(n,206,0),l(n,210,0),l(n,214,0),l(n,218,0),l(n,247,0),l(n,257,0),l(n,265,0),l(n,271,0),l(n,287,0),l(n,292,0),l(n,302,0),l(n,325,0),l(n,329,0),l(n,334,0),l(n,357,0),l(n,361,0),l(n,365,0),l(n,372,0),l(n,378,0),l(n,384,0),l(n,388,0),l(n,392,0),l(n,403,0),l(n,415,0),l(n,423,0),l(n,427,0),l(n,435,0)},function(l,n){l(n,10,0,"{1, 2, 3, 4, 5, .........}"),l(n,18,0,"{0, 1, 2, 3, 4, 5, .........}"),l(n,26,0,"{2, 4, 6, 8, .........}"),l(n,34,0,"{1, 3, 5, 7, .........}"),l(n,219,0,"\\frac{a}{0}"),l(n,232,0,"{........., -4, -3, -2, -1, 0, 1, 2, 3, 4 ,.........}"),l(n,234,0,"{1, 2, 3, 4 ,.........}"),l(n,236,0,"{........., -4, -3, -2, -1}"),l(n,288,0,"\\frac{1}{a}"),l(n,293,0,"\\frac{1}{4}"),l(n,326,0,"\\frac{p}{q}"),l(n,335,0,"\\frac{3}{4}","-\\frac{4}{7}","-\\frac{5}{8}"),l(n,358,0,"\\frac{p}{q}"),l(n,362,0,"\\frac{q}{p}"),l(n,366,0,"\\frac{3}{5}","-\\frac{5}{3}","-\\frac{5}{7}","\\frac{7}{-5}"),l(n,373,0,"\\frac{5}{7}","-\\frac{7}{5}","\\frac{-3}{-5}","\\frac{-5}{-3}"),l(n,379,0,"\\frac{x + y}{2}"),l(n,385,0,"\\frac{3}{2}","\\frac{4}{3}"),l(n,389,0,"\\frac{\\frac{3}{2} + \\frac{4}{3}}{2} = \\frac{17}{12}"),l(n,393,0,"\\frac{3}{2}","\\frac{4}{3}"),l(n,404,0,"\\frac{1}{5} = 0.2 , \\frac{3}{10} = 0.3 "),l(n,416,0,"\\frac{1}{2} = 0.5 , \\frac{1}{8} = 0.125 "),l(n,424,0,"\\frac{1}{3} = 0.3333..."),l(n,436,0,"58000 = 5.8 \\times 10^{4} , 0.00067 = 6.7 \\times 10^{-4}")})}function o(l){return b.Mb(0,[(l()(),b.rb(0,0,null,null,1,"app-numbers",[],null,null,null,s,p)),b.qb(1,114688,null,0,i,[],null,null)],function(l,n){l(n,1,0)},null)}var m=b.nb("app-numbers",i,o,{},{},[]),h=u("SVse"),K=u("08mC"),c=u("fR1O"),x=u("iInd");class f{}u.d(n,"Unit1ModuleNgFactory",function(){return d});var d=b.ob(a,[],function(l){return b.Ab([b.Bb(512,b.j,b.Z,[[8,[r.a,m]],[3,b.j],b.v]),b.Bb(4608,h.m,h.l,[b.s,[2,h.v]]),b.Bb(1073742336,h.b,h.b,[]),b.Bb(1073742336,K.a,K.a,[]),b.Bb(1073742336,c.a,c.a,[]),b.Bb(1073742336,x.m,x.m,[[2,x.r],[2,x.k]]),b.Bb(1073742336,f,f,[]),b.Bb(1073742336,a,a,[]),b.Bb(1024,x.i,function(){return[[{path:"",component:i}]]},[])])})}}]);