-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path9-es5.6a6fc9d53649ea824b07.js
1 lines (1 loc) · 9.11 KB
/
9-es5.6a6fc9d53649ea824b07.js
1
(window.webpackJsonp=window.webpackJsonp||[]).push([[9],{"Y+wX":function l(n,u,a){"use strict";a.r(u);var b=a("8Y7J");var t=function l(){};var r=a("pMnS"),o=a("3ZQ1"),p=a("vKlC");var e=function(){function l(){}var n=l.prototype;n.ngOnInit=function l(){};return l}();var i=b.pb({encapsulation:0,styles:[["h1[_ngcontent-%COMP%]{font-size:2.4rem;font-weight:500;display:inline-block;margin:8px 0}h1[_ngcontent-%COMP%], h2[_ngcontent-%COMP%], h3[_ngcontent-%COMP%], h4[_ngcontent-%COMP%], h5[_ngcontent-%COMP%], h6[_ngcontent-%COMP%]{color:#333}a[_ngcontent-%COMP%], input[_ngcontent-%COMP%], li[_ngcontent-%COMP%], ol[_ngcontent-%COMP%], p[_ngcontent-%COMP%], ul[_ngcontent-%COMP%]{font-size:1.4rem;line-height:2.4rem;letter-spacing:.3px;letter-spacing:.03rem;font-weight:400;color:#444}li[_ngcontent-%COMP%] p[_ngcontent-%COMP%]{margin:0}li[_ngcontent-%COMP%]{padding-bottom:8px}ul[_ngcontent-%COMP%]{list-style-type:square}"]],data:{}});function h(l){return b.Mb(0,[(l()(),b.rb(0,0,null,null,1,"h1",[],null,null,null,null,null)),(l()(),b.Kb(-1,null,["QUADRATIC EQUATIONS"])),(l()(),b.rb(2,0,null,null,121,"ol",[],null,null,null,null,null)),(l()(),b.rb(3,0,null,null,13,"li",[],null,null,null,null,null)),(l()(),b.rb(4,0,null,null,1,"p",[],null,null,null,null,null)),(l()(),b.Kb(-1,null,[" Quadratic Polynomial : "])),(l()(),b.rb(6,0,null,null,1,"p",[],null,null,null,null,null)),(l()(),b.Kb(-1,null,[" A polynomial of second degree is caled a quadratic polynomial. "])),(l()(),b.rb(8,0,null,null,4,"p",[],null,null,null,null,null)),(l()(),b.Kb(-1,null,[" Eg. "])),(l()(),b.rb(10,0,null,null,2,"app-math-jax",[],null,null,null,o.b,o.a)),b.qb(11,4308992,null,0,p.a,[],null,null),(l()(),b.Kb(-1,0,["x^2 - 3"])),(l()(),b.rb(13,0,null,null,3,"p",[],null,null,null,null,null)),(l()(),b.rb(14,0,null,null,2,"app-math-jax",[],null,null,null,o.b,o.a)),b.qb(15,4308992,null,0,p.a,[],null,null),(l()(),b.Kb(-1,0,["4x^2 - 5x + 6."])),(l()(),b.rb(17,0,null,null,9,"li",[],null,null,null,null,null)),(l()(),b.rb(18,0,null,null,1,"p",[],null,null,null,null,null)),(l()(),b.Kb(-1,null,[" Zeros of a Quadratic polynomial : "])),(l()(),b.rb(20,0,null,null,1,"p",[],null,null,null,null,null)),(l()(),b.Kb(-1,null,[" The value of x in a polynomial for which polynomial function becomes zero, is called zero(s) of the given polynomial. "])),(l()(),b.rb(22,0,null,null,4,"p",[],null,null,null,null,null)),(l()(),b.Kb(-1,null,[" If 'a' is a zero of the polynomial "])),(l()(),b.rb(24,0,null,null,2,"app-math-jax",[],null,null,null,o.b,o.a)),b.qb(25,4308992,null,0,p.a,[],null,null),(l()(),b.Kb(-1,0,["f(x)\\;then\\;f(a) = 0. "])),(l()(),b.rb(27,0,null,null,13,"li",[],null,null,null,null,null)),(l()(),b.rb(28,0,null,null,1,"p",[],null,null,null,null,null)),(l()(),b.Kb(-1,null,[" Quadratic Equation : "])),(l()(),b.rb(30,0,null,null,1,"p",[],null,null,null,null,null)),(l()(),b.Kb(-1,null,[" An equation of degree 2 is a quadratic equation. "])),(l()(),b.rb(32,0,null,null,4,"p",[],null,null,null,null,null)),(l()(),b.Kb(-1,null,[" Eg : "])),(l()(),b.rb(34,0,null,null,2,"app-math-jax",[],null,null,null,o.b,o.a)),b.qb(35,4308992,null,0,p.a,[],null,null),(l()(),b.Kb(-1,0,["2x^2 -4x+ 7 =0 "])),(l()(),b.rb(37,0,null,null,3,"p",[],null,null,null,null,null)),(l()(),b.rb(38,0,null,null,2,"app-math-jax",[],null,null,null,o.b,o.a)),b.qb(39,4308992,null,0,p.a,[],null,null),(l()(),b.Kb(-1,0,["ax^2 + bx + c = 0"])),(l()(),b.rb(41,0,null,null,16,"li",[],null,null,null,null,null)),(l()(),b.rb(42,0,null,null,4,"p",[],null,null,null,null,null)),(l()(),b.Kb(-1,null,[" Nature of the Roots of the equation "])),(l()(),b.rb(44,0,null,null,2,"app-math-jax",[],null,null,null,o.b,o.a)),b.qb(45,4308992,null,0,p.a,[],null,null),(l()(),b.Kb(-1,0,[" ax^2 + bx+ c = 0"])),(l()(),b.rb(47,0,null,null,4,"p",[],null,null,null,null,null)),(l()(),b.Kb(-1,null,[" Discriminent : "])),(l()(),b.rb(49,0,null,null,2,"app-math-jax",[],null,null,null,o.b,o.a)),b.qb(50,4308992,null,0,p.a,[],null,null),(l()(),b.Kb(-1,0,[" D = b^2 -4ac"])),(l()(),b.rb(52,0,null,null,1,"p",[],null,null,null,null,null)),(l()(),b.Kb(-1,null,[" (i) If D>O - unequal and real roots "])),(l()(),b.rb(54,0,null,null,1,"p",[],null,null,null,null,null)),(l()(),b.Kb(-1,null,[" (ii) If D-O - equal and real roots "])),(l()(),b.rb(56,0,null,null,1,"p",[],null,null,null,null,null)),(l()(),b.Kb(-1,null,[" (iii) If D < O - No real roots. "])),(l()(),b.rb(58,0,null,null,10,"li",[],null,null,null,null,null)),(l()(),b.rb(59,0,null,null,5,"p",[],null,null,null,null,null)),(l()(),b.Kb(-1,null,[" Roots of the equation "])),(l()(),b.rb(61,0,null,null,2,"app-math-jax",[],null,null,null,o.b,o.a)),b.qb(62,4308992,null,0,p.a,[],null,null),(l()(),b.Kb(-1,0,["ax^2 + bx+ c = 0"])),(l()(),b.Kb(-1,null,[" are "])),(l()(),b.rb(65,0,null,null,3,"p",[],null,null,null,null,null)),(l()(),b.rb(66,0,null,null,2,"app-math-jax",[],null,null,null,o.b,o.a)),b.qb(67,4308992,null,0,p.a,[],null,null),(l()(),b.Kb(68,0,["\\alpha = ","\\;and\\;\\beta ="," "])),(l()(),b.rb(69,0,null,null,5,"li",[],null,null,null,null,null)),(l()(),b.rb(70,0,null,null,4,"p",[],null,null,null,null,null)),(l()(),b.Kb(-1,null,[" Sum of the roots "])),(l()(),b.rb(72,0,null,null,2,"app-math-jax",[],null,null,null,o.b,o.a)),b.qb(73,4308992,null,0,p.a,[],null,null),(l()(),b.Kb(74,0,["\\alpha+ \\beta = ",""])),(l()(),b.rb(75,0,null,null,5,"li",[],null,null,null,null,null)),(l()(),b.rb(76,0,null,null,4,"p",[],null,null,null,null,null)),(l()(),b.Kb(-1,null,[" Product of the roots "])),(l()(),b.rb(78,0,null,null,2,"app-math-jax",[],null,null,null,o.b,o.a)),b.qb(79,4308992,null,0,p.a,[],null,null),(l()(),b.Kb(80,0,["\\alpha \\beta = ",""])),(l()(),b.rb(81,0,null,null,5,"li",[],null,null,null,null,null)),(l()(),b.rb(82,0,null,null,4,"p",[],null,null,null,null,null)),(l()(),b.Kb(-1,null,[" Equal roots "])),(l()(),b.rb(84,0,null,null,2,"app-math-jax",[],null,null,null,o.b,o.a)),b.qb(85,4308992,null,0,p.a,[],null,null),(l()(),b.Kb(86,0,["\\alpha = \\beta = ",""])),(l()(),b.rb(87,0,null,null,17,"li",[],null,null,null,null,null)),(l()(),b.rb(88,0,null,null,5,"p",[],null,null,null,null,null)),(l()(),b.Kb(-1,null,[" If "])),(l()(),b.rb(90,0,null,null,2,"app-math-jax",[],null,null,null,o.b,o.a)),b.qb(91,4308992,null,0,p.a,[],null,null),(l()(),b.Kb(-1,0,["\\alpha\\;and\\;\\beta"])),(l()(),b.Kb(-1,null,[" are the roots of the equation then the "])),(l()(),b.rb(94,0,null,null,1,"p",[],null,null,null,null,null)),(l()(),b.Kb(-1,null,[" equation can be written as "])),(l()(),b.rb(96,0,null,null,4,"p",[],null,null,null,null,null)),(l()(),b.rb(97,0,null,null,2,"app-math-jax",[],null,null,null,o.b,o.a)),b.qb(98,4308992,null,0,p.a,[],null,null),(l()(),b.Kb(-1,0,["x^2 - x(sum\\;of\\;the\\;roots)+(product\\;of\\;the\\;roots)=0"])),(l()(),b.Kb(-1,null,[" (or) "])),(l()(),b.rb(101,0,null,null,3,"p",[],null,null,null,null,null)),(l()(),b.rb(102,0,null,null,2,"app-math-jax",[],null,null,null,o.b,o.a)),b.qb(103,4308992,null,0,p.a,[],null,null),(l()(),b.Kb(-1,0,["x^2-x(\\alpha + \\beta)+ \\alpha \\beta =0"])),(l()(),b.rb(105,0,null,null,18,"li",[],null,null,null,null,null)),(l()(),b.rb(106,0,null,null,1,"p",[],null,null,null,null,null)),(l()(),b.Kb(-1,null,[" lmportant Formulae : "])),(l()(),b.rb(108,0,null,null,3,"p",[],null,null,null,null,null)),(l()(),b.rb(109,0,null,null,2,"app-math-jax",[],null,null,null,o.b,o.a)),b.qb(110,4308992,null,0,p.a,[],null,null),(l()(),b.Kb(-1,0,["\\alpha^2 + \\beta^2 = (\\alpha+\\beta)^2 - 2\\alpha \\beta"])),(l()(),b.rb(112,0,null,null,3,"p",[],null,null,null,null,null)),(l()(),b.rb(113,0,null,null,2,"app-math-jax",[],null,null,null,o.b,o.a)),b.qb(114,4308992,null,0,p.a,[],null,null),(l()(),b.Kb(-1,0,["(\\alpha - \\beta)^2 = (\\alpha+\\beta)^2 - 4\\alpha \\beta"])),(l()(),b.rb(116,0,null,null,3,"p",[],null,null,null,null,null)),(l()(),b.rb(117,0,null,null,2,"app-math-jax",[],null,null,null,o.b,o.a)),b.qb(118,4308992,null,0,p.a,[],null,null),(l()(),b.Kb(-1,0,["\\alpha^4 + \\beta^4 =\\;[(\\alpha+\\beta)^2 -2\\alpha \\beta]^2 -2 \\alpha^2 \\beta^2"])),(l()(),b.rb(120,0,null,null,3,"p",[],null,null,null,null,null)),(l()(),b.rb(121,0,null,null,2,"app-math-jax",[],null,null,null,o.b,o.a)),b.qb(122,4308992,null,0,p.a,[],null,null),(l()(),b.Kb(-1,0,["\\alpha^5 + \\beta^5 =\\; (\\alpha^3+\\beta^3)\\;(\\alpha^2+\\beta^2) - \\alpha^2 \\beta^2 (\\alpha+\\beta)"]))],function(l,n){l(n,11,0),l(n,15,0),l(n,25,0),l(n,35,0),l(n,39,0),l(n,45,0),l(n,50,0),l(n,62,0),l(n,67,0),l(n,73,0),l(n,79,0),l(n,85,0),l(n,91,0),l(n,98,0),l(n,103,0),l(n,110,0),l(n,114,0),l(n,118,0),l(n,122,0)},function(l,n){l(n,68,0,"\\frac{-b+sqrtB}{2a}","\\frac{-b-sqrtB}{2a}"),l(n,74,0,"\\frac{-b}{a}"),l(n,80,0,"\\frac{c}{a}"),l(n,86,0,"\\frac{-b}{2a}")})}function c(l){return b.Mb(0,[(l()(),b.rb(0,0,null,null,1,"app-quadraticequations",[],null,null,null,h,i)),b.qb(1,114688,null,0,e,[],null,null)],function(l,n){l(n,1,0)},null)}var f=b.nb("app-quadraticequations",e,c,{},{},[]),m=a("SVse"),K=a("08mC"),s=a("iInd");var q=function l(){};a.d(u,"Unit11ModuleNgFactory",function(){return x});var x=b.ob(t,[],function(l){return b.Ab([b.Bb(512,b.j,b.Z,[[8,[r.a,f]],[3,b.j],b.v]),b.Bb(4608,m.m,m.l,[b.s,[2,m.v]]),b.Bb(1073742336,m.b,m.b,[]),b.Bb(1073742336,K.a,K.a,[]),b.Bb(1073742336,s.m,s.m,[[2,s.r],[2,s.k]]),b.Bb(1073742336,q,q,[]),b.Bb(1073742336,t,t,[]),b.Bb(1024,s.i,function(){return[[{path:"",component:e}]]},[])])})}}]);