-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathmarkov_finite.py
341 lines (290 loc) · 11.4 KB
/
markov_finite.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
# Author: Kyle Kastner
# License: BSD 3-Clause
# built out of code from Gabriele Barbieri
# https://github.com/gabrielebarbieri/markovchain
# All mistakes my own
from collections import defaultdict
import copy
import nltk
import pandas as pd
import os
import numpy as np
from functools import partial
import string
NLTK_PACKAGES = ['punkt', 'word2vec_sample', 'cmudict']
START_SYMBOL = '<s>'
END_SYMBOL = '</s>'
_WORD2VEC = None
_CMU_DICT = None
BLACKLIST = ['"', '``', "''"]
DYLAN_DATA = 'data/Dylan'
DYLAN_POPULARITY = 'data/dylan_popularity.csv'
def get_dylan_most_popular_songs(n=5):
df = pd.read_csv(DYLAN_POPULARITY)
return [os.path.join(DYLAN_DATA, f) for f in df.file.head(n)]
def get_rhymes(word):
try:
d = get_cmu_dict()
return set(get_rhyme_from_pronunciation(p) for p in d[word] if p)
except KeyError:
return []
def get_rhyme_from_pronunciation(pronunciation):
stresses = []
for p in pronunciation:
try:
stresses.append(int(p[-1]))
except ValueError:
pass
stress = str(max(stresses))
# the reversed is needed to deal with the "because" case
for i, e in enumerate(reversed(pronunciation)):
if e.endswith(stress):
return ','.join(pronunciation[len(pronunciation) - 1 - i:])
def process_word(word, replace_dict=None):
processed_word = word.lower()
if replace_dict is not None:
for k, v in replace_dict.items():
if k in processed_word:
processed_word = processed_word.replace(k, v)
return processed_word
def tokenize(string, replace_dict=None):
words = [process_word(token, replace_dict) for token in nltk.word_tokenize(string) if token not in BLACKLIST]
# strip nonrhyming words, which includes stuff like punctuation
return [START_SYMBOL] + words + [END_SYMBOL]
def tokenize_corpus(sources, replace_dict=None):
sentences = []
for file_name in sources:
try:
with open(file_name) as f:
sentences += [tokenize(line, replace_dict) for line in f if line.strip()]
except IOError:
pass
return sentences
def get_coeffs(transitions):
return {prefix: sum(probabilities.values()) for prefix, probabilities in transitions.items()}
def normalize_it(values, coeff):
return {suffix: value / float(coeff) for suffix, value in values.items()}
def normalize(transitions, coeffs=None):
# normalization coeffs are optional
if coeffs is None:
coeffs = get_coeffs(transitions)
res = empty_transitions()
for prefix, probabilities in transitions.items():
res[prefix] = normalize_it(probabilities, coeffs[prefix])
return res
def empty_transitions():
m = defaultdict(lambda: defaultdict(float))
return m
def markov_transitions(sequences, order):
# order None returns the dict structure directly
m = empty_transitions()
for seq in sequences:
for n_gram in zip(*(seq[i:] for i in range(order + 1))):
prefix = n_gram[:-1]
suffix = n_gram[-1]
m[prefix][suffix] += 1.
return normalize(m)
def make_markov_corpus(sequences, order_upper):
return {order: markov_transitions(sequences, order) for order in range(order_upper + 1)}
def filter_(transitions, values):
if values is None:
return transitions
if hasattr(values, "keys"):
res = copy.deepcopy(transitions)
res_keys = res.keys()
# make the partial keys up front... annoying
r = [[(rk, rk[-i:]) for idx, rk in enumerate(res_keys)] for i in range(1, len(res_keys[0]) + 1)]
res_k = [[rii[0] for rii in ri] for ri in r]
res_m = [[rii[1] for rii in ri] for ri in r]
for prefix, suffix in values.items():
i = len(prefix) - 1
p_m = res_m[i]
p_k = res_k[i]
if prefix in p_m:
# find indices
ii = [n for n, _ in enumerate(p_m) if prefix == _]
# delete full matches
for di in ii:
# looks ugly due to checks
if p_k[di] in res:
for su in suffix:
if su in res[p_k[di]]:
del res[p_k[di]][su]
return res
else:
res = {}
for prefix, probs in transitions.items():
filtered = {suffix: probs[suffix] for suffix in probs.keys() if suffix in values}
if filtered:
res[prefix] = filtered
return res
def propagate_(constrained_markov, coeffs):
if coeffs is None:
return constrained_markov
res = {}
for prefix, probs in constrained_markov.items():
transitions = {}
for suffix, value in probs.items():
index = prefix[1:] + (suffix,)
if index in coeffs:
transitions[suffix] = value * coeffs[index]
else:
# for lower order ones
index = prefix + (suffix,)
if index in coeffs:
transitions[suffix] = value * coeffs[index]
# if it's not in the coeffs, just pass
if transitions:
res[prefix] = transitions
return res
def make_constrained_markov(markovs, constraints):
# Section 4.3 of https://www.ijcai.org/Proceedings/11/Papers/113.pdf
# Finite-Length Markov Processes with Constraints
# Pachet, Roy, Barbieri
# constraints are hard requirements for the sequence
# dict rules are transitions which should be disallowed
coeffs = None
orders = markovs.keys()
max_order = max(orders)
markov_process = []
for index, values in reversed(list(enumerate(constraints))):
transitions = markovs[min(index, max_order)]
filtered = filter_(transitions, values)
filtered = propagate_(filtered, coeffs)
if not filtered:
raise RuntimeError('The constraints satisfaction problem has no solution. '
'Try to relax your constraints')
coeffs = get_coeffs(filtered)
# prepend because of reverse
markov_process.insert(0, normalize(filtered, coeffs))
return markov_process
def generate_from_constrained_markov_process(constrained_markov_process, random_state):
max_order = len(constrained_markov_process[-1].keys()[0])
sequence = []
for index, markov in enumerate(constrained_markov_process):
prefix = tuple(sequence[-min(index, max_order):])
probs = markov[prefix]
value = random_state.choice(probs.keys(), p=probs.values())
sequence.append(value)
return sequence
class Trie(object):
def __init__(self):
self.root = defaultdict()
self._end = "_end"
self.orders = []
def insert(self, list_of_items):
current = self.root
for item in list_of_items:
current = current.setdefault(item, {})
current.setdefault(self._end)
self.orders = sorted(list(set(self.orders + [len(list_of_items)])))
def order_insert(self, order, list_of_items):
s = 0
e = order
while e < len(list_of_items):
# + 1 due to numpy slicing
e = s + order + 1
self.insert(list_of_items[s:e])
s += 1
def search(self, list_of_items):
# items of the list should be hashable
# returns True if item in Trie, else False
if len(list_of_items) not in self.orders:
raise ValueError("item {} has invalid length {} for search, only {} supported".format(list_of_items, len(list_of_items), self.orders))
current = self.root
for item in list_of_items:
if item not in current:
return False
current = current[item]
if self._end in current:
return True
return False
def order_search(self, order, list_of_items):
# returns true if subsequence at offset is found
s = 0
e = order
searches = []
while e < len(list_of_items):
# + 1 due to numpy slicing
e = s + order + 1
searches.append(self.search(list_of_items[s:e]))
s += 1
return searches
def test_markov_process():
# constraints are listed PER STEP
# rule constraints are list of list, e.g. [[prefix1, prefix2],[suffix]]
# this one will match tutorial
order = 1
# mc should exactly match end of 4.4
c = [None, None, None, ["D"]]
# this one checks hard unary constraints that *SHOULD* happen
# c = [["E"], ["C"], ["C"], ["D"]]
# can have multiple unary constraints - output should be in this set
#c = [["E", "C"], ["E", "C"], ["E", "C"], ["D"]]
# this one checks pairwise transitions that shouldn't happen
#c = [None, None, {("E",): ["D","C"], ("C",): ["D"]}, ["D"]]
# can also do higher order
#order = 2
#c = [None, None, ["E"]]
# binary constraints up to markov order
#c = [None, None, {("C", "D"): ["E"]}]
# can accept constraints that are shorter, for partial match
#c = [None, None, {"E": ["E"]}]
corpus = [["E", "C", "D", "E", "C", "C"],
["C", "C", "E", "E", "D", "C"]]
# turn it into words
ms = make_markov_corpus(corpus, order)
mc = make_constrained_markov(ms, c)
random_state = np.random.RandomState(100)
for i in range(5):
print(generate_from_constrained_markov_process(mc, random_state))
# can also seed the generation, thus bypassing the prior
#print(generate_from_constrained_markov_process(mc, random_state, starting_seed=["C"]))
# also for higher order, seed with order length
#print(generate_from_constrained_markov_process(mc, random_state, starting_seed=["E", "C"]))
def test_dylan():
sources = get_dylan_most_popular_songs(40)
order = 2
corpus = tokenize_corpus(sources)
ms = make_markov_corpus(corpus, order)
# add not constraints
# like !D, !C etc
# can we iteratively create the max-order constraints?
# using suffix tree, writing to c and recompiling mc?
length = 10
c = [["<s>"]] + [None] * (length + 1) + [["</s>"]]
# remove you
#c[1] = {("<s>",): ["you"]}
#c[2] = {("<s>", "you"): ["'ve"]}
#c[5] = {("been", "through"): ["all"]}
# check partial match
#c[5] = {("through",): ["all"]}
mc = make_constrained_markov(ms, c)
random_state = np.random.RandomState(100)
for i in range(10):
#print(generate_from_constrained_markov_process(mc, random_state, starting_seed=["<s>"]))
print(generate_from_constrained_markov_process(mc, random_state))
def test_dylan_maxorder():
sources = get_dylan_most_popular_songs(40)
corpus = tokenize_corpus(sources)
corpus = [[ci for ci in c if ci not in [".", "'", ","]]
for c in corpus]
checker = Trie()
max_order = 5
[checker.order_insert(max_order, c) for c in corpus]
order = 2
ms = make_markov_corpus(corpus, order)
length = 10
c = [["<s>"]] + [None] * (length + 1) + [["</s>"]]
mc = make_constrained_markov(ms, c)
random_state = np.random.RandomState(100)
generations = []
for i in range(1000):
generations.append(generate_from_constrained_markov_process(mc, random_state))
passes = [checker.order_search(max_order, g) for g in generations]
passing_generations = [g for n, g in enumerate(generations) if not any(passes[n])]
print(passing_generations)
if __name__ == "__main__":
#test_markov_process()
#test_dylan()
#test_dylan_maxorder()