-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathlstm.py
103 lines (80 loc) · 3.21 KB
/
lstm.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
import os
import time
import warnings
import numpy as np
from numpy import newaxis
from keras.layers.core import Dense, Activation, Dropout
from keras.layers.recurrent import LSTM
from keras.models import Sequential
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3' # Hide messy TensorFlow warnings
warnings.filterwarnings("ignore") # Hide messy Numpy warnings
def load_data(filename, seq_len, normalise_window):
f = open(filename, 'rb').read()
data = f.decode().split('\n')
sequence_length = seq_len + 1
result = []
for index in range(len(data) - sequence_length):
result.append(data[index: index + sequence_length])
if normalise_window:
result = normalise_windows(result)
result = np.array(result)
row = round(0.9 * result.shape[0])
train = result[:int(row), :]
np.random.shuffle(train)
x_train = train[:, :-1]
y_train = train[:, -1]
x_test = result[int(row):, :-1]
y_test = result[int(row):, -1]
x_train = np.reshape(x_train, (x_train.shape[0], x_train.shape[1], 1))
x_test = np.reshape(x_test, (x_test.shape[0], x_test.shape[1], 1))
return [x_train, y_train, x_test, y_test]
def normalise_windows(window_data):
normalised_data = []
for window in window_data:
normalised_window = [((float(p) / float(window[0])) - 1) for p in window]
normalised_data.append(normalised_window)
return normalised_data
def build_model(layers):
model = Sequential()
model.add(LSTM(
input_shape=(layers[1], layers[0]),
output_dim=layers[1],
return_sequences=True))
model.add(Dropout(0.2))
model.add(LSTM(
layers[2],
return_sequences=False))
model.add(Dropout(0.2))
model.add(Dense(
output_dim=layers[3]))
model.add(Activation("linear"))
start = time.time()
model.compile(loss="mse", optimizer="rmsprop")
print("> Compilation Time : ", time.time() - start)
return model
def predict_point_by_point(model, data):
# Predict each time-step given the last sequence of true data, in effect only predicting 1 step ahead each time
predicted = model.predict(data)
predicted = np.reshape(predicted, (predicted.size,))
return predicted
def predict_sequence_full(model, data, window_size):
# Shift the window by 1 new prediction each time, re-run predictions on new window
curr_frame = data[0]
predicted = []
for i in range(len(data)):
predicted.append(model.predict(curr_frame[newaxis, :, :])[0, 0])
curr_frame = curr_frame[1:]
curr_frame = np.insert(curr_frame, [window_size-1], predicted[-1], axis=0)
return predicted
def predict_sequences_multiple(model, data, window_size, prediction_len):
# Predict sequence of 50 steps before shifting prediction run forward by 50 steps
prediction_seqs = []
for i in range(int(len(data)/prediction_len)):
curr_frame = data[i*prediction_len]
predicted = []
for j in range(prediction_len):
predicted.append(model.predict(curr_frame[newaxis, :, :])[0, 0])
curr_frame = curr_frame[1:]
curr_frame = np.insert(curr_frame, [window_size-1], predicted[-1], axis=0)
prediction_seqs.append(predicted)
return prediction_seqs