forked from OmarMedhat22/Iris-Recognition-on-Ubiris-v2
-
Notifications
You must be signed in to change notification settings - Fork 0
/
iris_segmentation.py
171 lines (115 loc) · 4.82 KB
/
iris_segmentation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
import cv2
import numpy as np
import glob
import pickle
def transform_image(img,threshold):
retval, threshold = cv2.threshold(img, threshold, 255, cv2.THRESH_BINARY)
opening = cv2.morphologyEx(threshold, cv2.MORPH_OPEN, kernel)
closing = cv2.morphologyEx(threshold, cv2.MORPH_CLOSE, kernel)
open_close = cv2.bitwise_or(opening, closing, mask = None)
return open_close
imgs = []
label=0
final_output = []
lables = []
'''
for filepath in glob.iglob('test/*'):
if filepath[-1] == 'g':
img = cv2.imread(filepath)
img=cv2.resize(img,(200,150))
img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
imgs.append([img,filepath])
print(filepath)
'''
#'''
for filepath in glob.iglob('UBIRIS_200_150/Sessao_1/*'):
num_in_folder= 0
for filefilepath in glob.iglob(filepath+'/*'):
if filefilepath[-1] == 'g':
img = cv2.imread(filefilepath)
imgs_colored=cv2.imread(filefilepath)
img=cv2.resize(img,(200,150))
#imgs_colored.append(img)
img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
imgs.append([img,num_in_folder,label,imgs_colored])
num_in_folder = num_in_folder+1
label=label+1
#'''
print("total images number ",len(imgs))
kernel = np.ones((5,5),np.uint8)
import random
random.shuffle(imgs)
test=[]
for i,j,L,c in imgs:
golden_refrence = sum(sum(transform_image(i,0)))
#print("golden refrence = "+str(golden_refrence))
for k in range(10,1000,10):
working_img = transform_image(i,k)
suming = sum(sum(working_img))
diffrence = suming-golden_refrence
if diffrence>800:
print("the image threshold = " ,k)
print("the image name " +str(j))
print(" " )
_, contours,_ = cv2.findContours(working_img, cv2.RETR_TREE, cv2.CHAIN_APPROX_NONE)
for z in contours:
x,y,w,h = cv2.boundingRect(z)
if x+w<150 and y+h<200 and x-w//4>0:
cv2.rectangle(working_img,(x,y),(x+w,y+h),(0,255,0),-2)
_, contours_2,_ = cv2.findContours(working_img, cv2.RETR_TREE, cv2.CHAIN_APPROX_NONE)
maxium_area=0
maxium_area = 0
maxium_width=0
point_x=0
point_y=0
maxium_height = 0
for z in contours_2:
#print(len(i))
x,y,w,h = cv2.boundingRect(z)
new_area=h*w
if x+w<150 and y+h<200 and new_area>maxium_area and x-w//4>0:
maxium_area = new_area
maxium_width=w
point_x=x
point_y=y
maxium_height = h
#cv2.rectangle(working_img,(x,y),(x+w,y+h),(0,255,0),-2)
#cv2.rectangle(i,(point_x,point_y),(point_x+maxium_width,point_y+maxium_height),(0,255,0),-2)
center_x = point_x+maxium_width//2
center_y = point_y+maxium_height//2
radius = 40
if center_y-radius>0 and center_x-radius >0 and center_y+radius < 200 and center_x+radius < 150:
#cv2.circle(c, (int(center_x), int(center_y)), int(radius), (0, 255, 255), 2)
new_roi = c[center_y-radius:center_y+radius, center_x-radius:center_x+radius]
new_roi=cv2.resize(new_roi,(200,150))
#new_roi = cv2.cvtColor(new_roi,cv2.COLOR_GRAY2BGR)
cv2.imwrite('final_ubiris_color/'+str(L)+'.'+str(j)+'.jpg',new_roi)
#new_roi=cv2.resize(new_roi,(200,150))
else:
center_y=c.shape[0]//2
center_x=c.shape[1]//2
new_roi = c[center_y-radius:center_y+radius, center_x-radius:center_x+radius]
new_roi =cv2.resize(new_roi,(200,150))
#new_roi = cv2.cvtColor(new_roi,cv2.COLOR_GRAY2BGR)
cv2.imwrite('final_ubiris_color/'+str(L)+'.'+str(j)+'.jpg',new_roi)
cv2.imwrite('edging_5/'+str(L)+'_'+str(j)+'.jpg',i)
test.append(i)
final_output.append(new_roi)
lables.append(L)
#cv2.imwrite('edging_5_test/'+str(j[5:]),i)
break
print("the lenght of final output = ",len(final_output))
print("the of lables = ",len(lables))
final_output=np.array(final_output)
print(final_output.shape)
test=np.array(test)
print(test.shape)
pickle_out = open("test_ubiris.pickle","wb")
pickle.dump(test, pickle_out)
pickle_out.close()
pickle_out = open("ubiris_features.pickle","wb")
pickle.dump(final_output, pickle_out)
pickle_out.close()
pickle_out = open("ubiris_lables.pickle","wb")
pickle.dump(lables, pickle_out)
pickle_out.close()