-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathmodel_ama_lightgbm_v2.py
151 lines (116 loc) · 5.57 KB
/
model_ama_lightgbm_v2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
# -*- coding: utf-8 -*-
"""
Created on Mon Nov 06 16:24:41 2017
@author: mimar
"""
import numpy as np
from sklearn.metrics import roc_auc_score
from scipy.stats import pearsonr
import lightgbm as lgb
from sklearn.preprocessing import OneHotEncoder
import os
from sklearn.externals import joblib
from sklearn.cross_validation import StratifiedKFold
from sklearn.utils import shuffle
import lightgbm as lgb
def bagged_set(X_ts,y_cs, seed, estimators, xt,yt=None):
# create array object to hold predictions
baggedpred=np.array([ 0.0 for d in range(0, xt.shape[0])])
#loop for as many times as we want bags
for n in range (0, estimators):
params = { 'objective': 'binary',
'metric': 'auc',
'boosting': 'dart',
'learning_rate': 0.04, #change here
#'drop_rate':0.005,
'verbose': 0,
'num_leaves': 25, # ~18
'bagging_fraction': 0.9,
#'categorical_feature':'2,4,5,22,23,24,25,26,27,28,29,30,31,32',
'bagging_freq': 1,
'bagging_seed': seed + n,
'feature_fraction': 0.4,
'feature_fraction_seed': seed + n,
'min_data_in_leaf': 25, #30, #56, # 10-50
'max_bin': 255, # maybe useful with overfit problem
'max_depth':10,
#'reg_lambda': 10,
'reg_alpha':2,
'lambda_l2': 2.5,
'num_threads':18
}
d_train = lgb.Dataset(X_ts,y_cs, free_raw_data=False)#np.log1p(
if type(yt)!=type(None):
d_cv = lgb.Dataset(xt,yt, free_raw_data=False, reference=d_train)#, reference=d_train
model = lgb.train(params,d_train,num_boost_round=1000,
valid_sets=d_cv,
verbose_eval=True ) #1000
else :
d_cv = lgb.Dataset(xt, free_raw_data=False)
model = lgb.train(params,d_train,num_boost_round=1000) #1000
preds=model.predict(xt)
# update bag's array
baggedpred+=preds
print("completed: " + str(n) )
# divide with number of bags to create an average estimate
baggedpred/= estimators
return baggedpred
#train = np.loadtxt('first_level_train.csv')
#test = np.loadtxt('first_level_test.csv')
#train=np.loadtxt('train.csv',usecols=[k for k in range(1,9)], skiprows=1, delimiter=",")
#test = np.loadtxt('test.csv',usecols=[k for k in range(1,9)], skiprows=1, delimiter=",")
X=np.loadtxt('train_munged.csv',usecols=[k for k in range(0,55)], skiprows=1, delimiter=",")
y =np.loadtxt("train.csv", delimiter=',',usecols=[0], skiprows=1)
meta_folder="meta_folder/"
if not os.path.exists(meta_folder): #if it does not exists, we create it
os.makedirs(meta_folder)
output_name="lightgbm_script_v2"
print(X.shape, y.shape)
############### Params section #####################
bagging=15 # number of models trained with different seeds
number_of_folds = 5 # number of folds in strattified cv
kfolder=StratifiedKFold(y, n_folds= number_of_folds,shuffle=True, random_state=1)
#model to use
#modelextra= ExtraTreesClassifier(n_estimators=1000, criterion='entropy', max_depth=40,
#min_samples_split=4,min_samples_leaf=2, max_features=0.7,n_jobs=25, random_state=1)
train_stacker=[ 0.0 for k in range (0,X.shape[0]) ]
#create target variable
mean_kapa = 0.0
kfolder=StratifiedKFold(y, n_folds=number_of_folds,shuffle=True, random_state=1)
#X,y=shuffle(X,y, random_state=SEED) # Shuffle since the data is ordered by time
i=0 # iterator counter
print ("starting cross validation with %d kfolds " % (number_of_folds))
for train_index, test_index in kfolder:
# creaning and validation sets
X_train, X_cv = X[train_index], X[test_index]
y_train, y_cv = np.array(y)[train_index], np.array(y)[test_index]
print (" train size: %d. test size: %d, cols: %d " % ((X_train.shape[0]) ,(X_cv.shape[0]) ,(X_train.shape[1]) ))
preds= bagged_set(X_train,y_train, 1, bagging, X_cv,yt=None )# y_cv
auc=roc_auc_score(y_cv, preds)
print ("size train: %d size cv: %d auc (fold %d/%d): %f" % ((X_train.shape[0]), (X_cv.shape[0]), i + 1, number_of_folds,auc))
mean_kapa += auc
#save the results
no=0
for real_index in test_index:
train_stacker[real_index]=(preds[no])
no+=1
i+=1 # increment cv iterator
if (number_of_folds)>0:
mean_kapa/=number_of_folds
print (" Average auc : %f" % (mean_kapa) )
np.savetxt(meta_folder+output_name+ ".train.csv",np.array(train_stacker), fmt='%.6f')
print (" printing train datasets ")
X_test = np.loadtxt('test_munged.csv',usecols=[k for k in range(0,55)], skiprows=1, delimiter=",")
preds= bagged_set(X,y, 1, bagging, X_test,yt=None)
# === Predictions === #
print (" printing test datasets ")
np.savetxt(meta_folder+output_name+ ".test.csv",np.array(preds), fmt='%.6f')
print("Write results...")
output_file = "submission_"+str( (mean_kapa ))+".csv"
print("Writing submission to %s" % output_file)
f = open(output_file, "w")
f.write("id,action\n")# the header
for g in range(0, len(preds)) :
f.write("%d,%f\n" % (g+1,preds[g]))
f.close()
print("Done.")