|
49 | 49 | psd_end = gps + 2048
|
50 | 50 |
|
51 | 51 | # define frequency integration bounds for the likelihood
|
| 52 | +# we set fmax to 87.5% of the Nyquist frequency to avoid |
| 53 | +# data corrupted by the GWOSC antialiasing filter |
| 54 | +# (Note that Data.from_gwosc will pull data sampled at |
| 55 | +# 4096 Hz by default) |
52 | 56 | fmin = 20.0
|
53 |
| -fmax = 1000.0 |
| 57 | +fmax = 896.0 |
54 | 58 |
|
55 | 59 | ifos = [H1, L1]
|
56 | 60 |
|
57 | 61 | for ifo in ifos:
|
| 62 | + # set analysis data |
58 | 63 | data = jd.Data.from_gwosc(ifo.name, start, end)
|
59 | 64 | ifo.set_data(data)
|
60 | 65 |
|
| 66 | + # set PSD (Welch estimate) |
61 | 67 | psd_data = jd.Data.from_gwosc(ifo.name, psd_start, psd_end)
|
62 | 68 | psd_fftlength = data.duration * data.sampling_frequency
|
63 | 69 | ifo.set_psd(psd_data.to_psd(nperseg=psd_fftlength))
|
64 | 70 |
|
| 71 | +# define the approximant to use |
65 | 72 | waveform = RippleIMRPhenomPv2(f_ref=20)
|
66 | 73 |
|
67 | 74 | ###########################################
|
|
154 | 161 |
|
155 | 162 |
|
156 | 163 | likelihood = TransientLikelihoodFD(
|
157 |
| - [H1, L1], waveform=waveform, trigger_time=gps, duration=4, post_trigger_duration=2 |
| 164 | + [H1, L1], waveform=waveform, f_min=fmin, f_max=fmax, trigger_time=gps |
158 | 165 | )
|
159 | 166 |
|
160 | 167 |
|
|
163 | 170 | # mass_matrix = mass_matrix.at[9, 9].set(1e-3)
|
164 | 171 | local_sampler_arg = {"step_size": mass_matrix * 1e-3}
|
165 | 172 |
|
166 |
| -Adam_optimizer = optimization_Adam( |
167 |
| - n_steps=3000, learning_rate=0.01, noise_level=1) |
| 173 | +# Adam_optimizer = optimization_Adam( |
| 174 | +# n_steps=3000, learning_rate=0.01, noise_level=1) |
168 | 175 |
|
169 | 176 |
|
170 | 177 | n_epochs = 20
|
|
0 commit comments