diff --git a/example/GW170817_heterodyne.py b/example/GW170817_heterodyne.py new file mode 100644 index 00000000..2e4f8e40 --- /dev/null +++ b/example/GW170817_heterodyne.py @@ -0,0 +1,140 @@ +from jimgw.jim import Jim +from jimgw.detector import H1, L1, V1 +from jimgw.likelihood import HeterodynedTransientLikelihoodFD +from jimgw.waveform import RippleIMRPhenomD +from jimgw.prior import Uniform, Powerlaw, Composite +import jax.numpy as jnp +import jax +import time +jax.config.update("jax_enable_x64", True) + + +### Fetching the data + +total_time_start = time.time() +gps = 1187008882.43 +trigger_time = gps +fmin = 20 +fmax = 2048 +minimum_frequency = fmin +maximum_frequency = fmax +T = 128 +duration = T +post_trigger_duration = 2 +epoch = duration - post_trigger_duration +f_ref = fmin + +### Getting ifos and overwriting with above data + +tukey_alpha = 2 / (duration / 2) +H1.load_data(gps, duration, 2, fmin, fmax, psd_pad=duration+16, tukey_alpha=tukey_alpha) +L1.load_data(gps, duration, 2, fmin, fmax, psd_pad=duration+16, tukey_alpha=tukey_alpha) +V1.load_data(gps, duration, 2, fmin, fmax, psd_pad=duration+16, tukey_alpha=tukey_alpha) + +### Define priors + +# Internal parameters +Mc_prior = Uniform(1.18, 1.21, naming=["M_c"]) +q_prior = Uniform( + 0.125, + 1.0, + naming=["q"], + transforms={"q": ("eta", lambda params: params["q"] / (1 + params["q"]) ** 2)}, +) +s1z_prior = Uniform(-0.05, 0.05, naming=["s1_z"]) +s2z_prior = Uniform(-0.05, 0.05, naming=["s2_z"]) + +# External parameters +dL_prior = Powerlaw(1.0, 75.0, 2.0, naming=["d_L"]) +t_c_prior = Uniform(-0.1, 0.1, naming=["t_c"]) +phase_c_prior = Uniform(0.0, 2 * jnp.pi, naming=["phase_c"]) +cos_iota_prior = Uniform( + -1.0, + 1.0, + naming=["cos_iota"], + transforms={ + "cos_iota": ( + "iota", + lambda params: jnp.arccos( + jnp.arcsin(jnp.sin(params["cos_iota"] / 2 * jnp.pi)) * 2 / jnp.pi + ), + ) + }, +) +psi_prior = Uniform(0.0, jnp.pi, naming=["psi"]) +ra_prior = Uniform(0.0, 2 * jnp.pi, naming=["ra"]) +sin_dec_prior = Uniform( + -1.0, + 1.0, + naming=["sin_dec"], + transforms={ + "sin_dec": ( + "dec", + lambda params: jnp.arcsin( + jnp.arcsin(jnp.sin(params["sin_dec"] / 2 * jnp.pi)) * 2 / jnp.pi + ), + ) + }, +) + +prior = Composite([ + Mc_prior, + q_prior, + s1z_prior, + s2z_prior, + dL_prior, + t_c_prior, + phase_c_prior, + cos_iota_prior, + psi_prior, + ra_prior, + sin_dec_prior, + ] +) + +# The following only works if every prior has xmin and xmax property, which is OK for Uniform and Powerlaw +bounds = jnp.array([[p.xmin, p.xmax] for p in prior.priors]).T + +### Create likelihood object +likelihood = HeterodynedTransientLikelihoodFD([H1, L1, V1], prior=prior, bounds=bounds, waveform=RippleIMRPhenomD(), trigger_time=gps, duration=T, n_bins=500) + +### Create sampler and jim objects +eps = 3e-2 +n_dim = 11 +mass_matrix = jnp.eye(n_dim) +mass_matrix = mass_matrix.at[0,0].set(1e-5) +mass_matrix = mass_matrix.at[1,1].set(1e-4) +mass_matrix = mass_matrix.at[2,2].set(1e-3) +mass_matrix = mass_matrix.at[3,3].set(1e-3) +mass_matrix = mass_matrix.at[5,5].set(1e-5) +mass_matrix = mass_matrix.at[9,9].set(1e-2) +mass_matrix = mass_matrix.at[10,10].set(1e-2) +local_sampler_arg = {"step_size": mass_matrix * eps} + +outdir_name = "./outdir/" + +jim = Jim( + likelihood, + prior, + n_loop_pretraining=0, + n_loop_training=200, + n_loop_production=20, + n_local_steps=200, + n_global_steps=200, + n_chains=1000, + n_epochs=300, + learning_rate=0.001, + max_samples=50000, + momentum=0.9, + batch_size=50000, + use_global=True, + keep_quantile=0.0, + train_thinning=10, + output_thinning=30, + n_loops_maximize_likelihood = 2000, + local_sampler_arg=local_sampler_arg, + outdir_name=outdir_name +) + +jim.sample(jax.random.PRNGKey(42)) +jim.print_summary() \ No newline at end of file diff --git a/src/jimgw/likelihood.py b/src/jimgw/likelihood.py index 488bb51b..1811b4f3 100644 --- a/src/jimgw/likelihood.py +++ b/src/jimgw/likelihood.py @@ -185,7 +185,7 @@ def __init__( self.freq_grid_low = freq_grid[:-1] print("Finding reference parameters..") - + self.ref_params = self.maximize_likelihood( bounds=bounds, prior=prior, popsize=popsize, n_loops=n_loops )