forked from tensorpack/tensorpack
-
Notifications
You must be signed in to change notification settings - Fork 0
/
eval.py
292 lines (248 loc) · 10.4 KB
/
eval.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
# -*- coding: utf-8 -*-
# File: eval.py
import itertools
import json
import numpy as np
import os
import sys
import tensorflow as tf
from collections import namedtuple
from concurrent.futures import ThreadPoolExecutor
from contextlib import ExitStack
import cv2
import pycocotools.mask as cocomask
import tqdm
from scipy import interpolate
from tensorpack.callbacks import Callback
from tensorpack.tfutils.common import get_tf_version_tuple
from tensorpack.utils import logger, get_tqdm
from common import CustomResize, clip_boxes
from config import config as cfg
from data import get_eval_dataflow
from dataset import DatasetRegistry
try:
import horovod.tensorflow as hvd
except ImportError:
pass
DetectionResult = namedtuple(
'DetectionResult',
['box', 'score', 'class_id', 'mask'])
"""
box: 4 float
score: float
class_id: int, 1~NUM_CLASS
mask: None, or a binary image of the original image shape
"""
def _scale_box(box, scale):
w_half = (box[2] - box[0]) * 0.5
h_half = (box[3] - box[1]) * 0.5
x_c = (box[2] + box[0]) * 0.5
y_c = (box[3] + box[1]) * 0.5
w_half *= scale
h_half *= scale
scaled_box = np.zeros_like(box)
scaled_box[0] = x_c - w_half
scaled_box[2] = x_c + w_half
scaled_box[1] = y_c - h_half
scaled_box[3] = y_c + h_half
return scaled_box
def _paste_mask(box, mask, shape):
"""
Args:
box: 4 float
mask: MxM floats
shape: h,w
Returns:
A uint8 binary image of hxw.
"""
assert mask.shape[0] == mask.shape[1], mask.shape
if cfg.MRCNN.ACCURATE_PASTE:
# This method is accurate but much slower.
mask = np.pad(mask, [(1, 1), (1, 1)], mode='constant')
box = _scale_box(box, float(mask.shape[0]) / (mask.shape[0] - 2))
mask_pixels = np.arange(0.0, mask.shape[0]) + 0.5
mask_continuous = interpolate.interp2d(mask_pixels, mask_pixels, mask, fill_value=0.0)
h, w = shape
ys = np.arange(0.0, h) + 0.5
xs = np.arange(0.0, w) + 0.5
ys = (ys - box[1]) / (box[3] - box[1]) * mask.shape[0]
xs = (xs - box[0]) / (box[2] - box[0]) * mask.shape[1]
# Waste a lot of compute since most indices are out-of-border
res = mask_continuous(xs, ys)
return (res >= 0.5).astype('uint8')
else:
# This method (inspired by Detectron) is less accurate but fast.
# int() is floor
# box fpcoor=0.0 -> intcoor=0.0
x0, y0 = list(map(int, box[:2] + 0.5))
# box fpcoor=h -> intcoor=h-1, inclusive
x1, y1 = list(map(int, box[2:] - 0.5)) # inclusive
x1 = max(x0, x1) # require at least 1x1
y1 = max(y0, y1)
w = x1 + 1 - x0
h = y1 + 1 - y0
# rounding errors could happen here, because masks were not originally computed for this shape.
# but it's hard to do better, because the network does not know the "original" scale
mask = (cv2.resize(mask, (w, h)) > 0.5).astype('uint8')
ret = np.zeros(shape, dtype='uint8')
ret[y0:y1 + 1, x0:x1 + 1] = mask
return ret
def predict_image(img, model_func):
"""
Run detection on one image, using the TF callable.
This function should handle the preprocessing internally.
Args:
img: an image
model_func: a callable from the TF model.
It takes image and returns (boxes, probs, labels, [masks])
Returns:
[DetectionResult]
"""
orig_shape = img.shape[:2]
resizer = CustomResize(cfg.PREPROC.TEST_SHORT_EDGE_SIZE, cfg.PREPROC.MAX_SIZE)
resized_img = resizer.augment(img)
scale = np.sqrt(resized_img.shape[0] * 1.0 / img.shape[0] * resized_img.shape[1] / img.shape[1])
boxes, probs, labels, *masks = model_func(resized_img)
# Some slow numpy postprocessing:
boxes = boxes / scale
# boxes are already clipped inside the graph, but after the floating point scaling, this may not be true any more.
boxes = clip_boxes(boxes, orig_shape)
if masks:
full_masks = [_paste_mask(box, mask, orig_shape)
for box, mask in zip(boxes, masks[0])]
masks = full_masks
else:
# fill with none
masks = [None] * len(boxes)
results = [DetectionResult(*args) for args in zip(boxes, probs, labels.tolist(), masks)]
return results
def predict_dataflow(df, model_func, tqdm_bar=None):
"""
Args:
df: a DataFlow which produces (image, image_id)
model_func: a callable from the TF model.
It takes image and returns (boxes, probs, labels, [masks])
tqdm_bar: a tqdm object to be shared among multiple evaluation instances. If None,
will create a new one.
Returns:
list of dict, in the format used by
`DatasetSplit.eval_inference_results`
"""
df.reset_state()
all_results = []
with ExitStack() as stack:
# tqdm is not quite thread-safe: https://github.com/tqdm/tqdm/issues/323
if tqdm_bar is None:
tqdm_bar = stack.enter_context(get_tqdm(total=df.size()))
for img, img_id in df:
results = predict_image(img, model_func)
for r in results:
# int()/float() to make it json-serializable
res = {
'image_id': img_id,
'category_id': int(r.class_id),
'bbox': [round(float(x), 4) for x in r.box],
'score': round(float(r.score), 4),
}
# also append segmentation to results
if r.mask is not None:
rle = cocomask.encode(
np.array(r.mask[:, :, None], order='F'))[0]
rle['counts'] = rle['counts'].decode('ascii')
res['segmentation'] = rle
all_results.append(res)
tqdm_bar.update(1)
return all_results
def multithread_predict_dataflow(dataflows, model_funcs):
"""
Running multiple `predict_dataflow` in multiple threads, and aggregate the results.
Args:
dataflows: a list of DataFlow to be used in :func:`predict_dataflow`
model_funcs: a list of callable to be used in :func:`predict_dataflow`
Returns:
list of dict, in the format used by
`DatasetSplit.eval_inference_results`
"""
num_worker = len(model_funcs)
assert len(dataflows) == num_worker
if num_worker == 1:
return predict_dataflow(dataflows[0], model_funcs[0])
kwargs = {'thread_name_prefix': 'EvalWorker'} if sys.version_info.minor >= 6 else {}
with ThreadPoolExecutor(max_workers=num_worker, **kwargs) as executor, \
tqdm.tqdm(total=sum([df.size() for df in dataflows])) as pbar:
futures = []
for dataflow, pred in zip(dataflows, model_funcs):
futures.append(executor.submit(predict_dataflow, dataflow, pred, pbar))
all_results = list(itertools.chain(*[fut.result() for fut in futures]))
return all_results
class EvalCallback(Callback):
"""
A callback that runs evaluation once a while.
It supports multi-gpu evaluation.
"""
_chief_only = False
def __init__(self, eval_dataset, in_names, out_names, output_dir):
self._eval_dataset = eval_dataset
self._in_names, self._out_names = in_names, out_names
self._output_dir = output_dir
def _setup_graph(self):
num_gpu = cfg.TRAIN.NUM_GPUS
if cfg.TRAINER == 'replicated':
# TF bug in version 1.11, 1.12: https://github.com/tensorflow/tensorflow/issues/22750
buggy_tf = get_tf_version_tuple() in [(1, 11), (1, 12)]
# Use two predictor threads per GPU to get better throughput
self.num_predictor = num_gpu if buggy_tf else num_gpu * 2
self.predictors = [self._build_predictor(k % num_gpu) for k in range(self.num_predictor)]
self.dataflows = [get_eval_dataflow(self._eval_dataset,
shard=k, num_shards=self.num_predictor)
for k in range(self.num_predictor)]
else:
# Only eval on the first machine,
# Because evaluation assumes that all horovod workers share the filesystem.
# Alternatively, can eval on all ranks and use allgather, but allgather sometimes hangs
self._horovod_run_eval = hvd.rank() == hvd.local_rank()
if self._horovod_run_eval:
self.predictor = self._build_predictor(0)
self.dataflow = get_eval_dataflow(self._eval_dataset,
shard=hvd.local_rank(), num_shards=hvd.local_size())
self.barrier = hvd.allreduce(tf.random_normal(shape=[1]))
def _build_predictor(self, idx):
return self.trainer.get_predictor(self._in_names, self._out_names, device=idx)
def _before_train(self):
eval_period = cfg.TRAIN.EVAL_PERIOD
self.epochs_to_eval = set()
for k in itertools.count(1):
if k * eval_period > self.trainer.max_epoch:
break
self.epochs_to_eval.add(k * eval_period)
self.epochs_to_eval.add(self.trainer.max_epoch)
logger.info("[EvalCallback] Will evaluate every {} epochs".format(eval_period))
def _eval(self):
logdir = self._output_dir
if cfg.TRAINER == 'replicated':
all_results = multithread_predict_dataflow(self.dataflows, self.predictors)
else:
filenames = [os.path.join(
logdir, 'outputs{}-part{}.json'.format(self.global_step, rank)
) for rank in range(hvd.local_size())]
if self._horovod_run_eval:
local_results = predict_dataflow(self.dataflow, self.predictor)
fname = filenames[hvd.local_rank()]
with open(fname, 'w') as f:
json.dump(local_results, f)
self.barrier.eval()
if hvd.rank() > 0:
return
all_results = []
for fname in filenames:
with open(fname, 'r') as f:
obj = json.load(f)
all_results.extend(obj)
os.unlink(fname)
scores = DatasetRegistry.get(self._eval_dataset).eval_inference_results(all_results)
for k, v in scores.items():
self.trainer.monitors.put_scalar(self._eval_dataset + '-' + k, v)
def _trigger_epoch(self):
if self.epoch_num in self.epochs_to_eval:
logger.info("Running evaluation ...")
self._eval()