forked from google/ffn
-
Notifications
You must be signed in to change notification settings - Fork 0
/
compute_partitions_mpi.py
328 lines (273 loc) · 11.4 KB
/
compute_partitions_mpi.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
#!/usr/bin/env python
r"""Computes the partition map for a segmentation.
For every labeled voxel of the input volume, computes the fraction of identically
labeled voxels within a neighborhood of radius `lom_radius`, and then quantizes
that number according to `thresholds`.
Sample invocation:
python compute_partitions.py \
--input_volume third_party/neuroproof_examples/training_sample2/groundtruth.h5:stack \
--output_volume af.h5:af \
--thresholds 0.025,0.05,0.075,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9 \
--lom_radius 16,16,16 \
--min_size 10000
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from absl import app
from absl import flags
from absl import logging
from ffn.inference import segmentation
from ffn.inference import storage
from ffn.utils import bounding_box
import h5py
import numpy as np
from scipy.ndimage import filters
from mpi4py import MPI
from time import time
FLAGS = flags.FLAGS
flags.DEFINE_string('input_volume', None,
'Segmentation volume as <volume_path>:<dataset>, where'
'volume_path points to a HDF5 volume.')
flags.DEFINE_string('output_volume', None,
'Volume in which to save the partition map, as '
'<volume_path>:<dataset>.')
flags.DEFINE_list('thresholds', None,
'List of activation voxel fractions used for partitioning.')
flags.DEFINE_list('lom_radius', None,
'Local Object Mask (LOM) radii as (x, y, z).')
flags.DEFINE_list('id_whitelist', None,
'Whitelist of object IDs for which to compute the partition '
'numbers.')
flags.DEFINE_list('exclusion_regions', None,
'List of (x, y, z, r) tuples specifying spherical regions to '
'mark as excluded (i.e. set the output value to 255).')
flags.DEFINE_string('mask_configs', None,
'MaskConfigs proto in text format. Any locations where at '
'least one voxel of the LOM is masked will be marked as '
'excluded.')
flags.DEFINE_integer('min_size', 10000,
'Minimum number of voxels for a segment to be considered for '
'partitioning.')
_comm = MPI.COMM_WORLD
_size = _comm.Get_size()
_rank = _comm.Get_rank()
def _summed_volume_table(val):
"""Computes a summed volume table of 'val'."""
val = val.astype(np.int32)
svt = val.cumsum(axis=0).cumsum(axis=1).cumsum(axis=2)
return np.pad(svt, [[1, 0], [1, 0], [1, 0]], mode='constant')
def _query_summed_volume(svt, diam):
"""Queries a summed volume table.
Operates in 'VALID' mode, i.e. only computes the sums for voxels where the
full diam // 2 context is available.
Args:
svt: summed volume table (see _summed_volume_table)
diam: diameter (z, y, x tuple) of the area within which to compute sums
Returns:
sum of all values within a diam // 2 radius (under L1 metric) of every voxel
in the array from which 'svt' was built.
"""
return (
svt[diam[0]:, diam[1]:, diam[2]:] - svt[diam[0]:, diam[1]:, :-diam[2]] -
svt[diam[0]:, :-diam[1], diam[2]:] - svt[:-diam[0], diam[1]:, diam[2]:] +
svt[:-diam[0], :-diam[1], diam[2]:] + svt[:-diam[0], diam[1]:, :-diam[2]]
+ svt[diam[0]:, :-diam[1], :-diam[2]] -
svt[:-diam[0], :-diam[1], :-diam[2]])
def load_mask(mask_configs, box, lom_diam_zyx):
if mask_configs is None:
return None
mask = storage.build_mask(mask_configs.masks, box.start[::-1],
box.size[::-1])
svt = _summed_volume_table(mask)
mask = _query_summed_volume(svt, lom_diam_zyx) >= 1
return mask
def get_slice(n,p,r):
"""
Distribute n consecutive things (rows of a matrix , elements of a 1D array)
as evenly as possible over p processors and return the slice for rank r.
Uneven workload (differs by 1 at most) is on the initial ranks.
Parameters
----------
n: int, Total number of things to be distributed.
p: int, Total number of processes
r: int, ID of the process (i.e. MPI rank)
Returns
----------
python slice object
"""
rstart = 0
rend = n
if p >= n:
if r < n:
rstart = r
rend = r + 1
else:
rstart = 0
rend = 0
else:
d = n // p
remainder = n % p
rstart = d * r
rend = d * (r+1)
if remainder:
if r >= remainder:
rstart += remainder
rend += remainder
else:
rstart += r
rend += r + 1
return slice(rstart, rend)
def compute_partitions(seg_array,
thresholds,
lom_radius,
id_whitelist=None,
exclusion_regions=None,
mask_configs=None,
min_size=10000):
"""Computes quantized fractions of active voxels in a local object mask.
Args:
thresholds: list of activation voxel fractions to use for partitioning.
lom_radius: LOM radii as [x, y, z]
id_whitelist: (optional) whitelist of object IDs for which to compute the
partition numbers
exclusion_regions: (optional) list of x, y, z, r tuples specifying regions
to mark as excluded (with 255). The regions are spherical, with
(x, y, z) definining the center of the sphere and 'r' specifying its
radius. All values are in voxels.
mask_configs: (optional) MaskConfigs proto; any locations where at least
one voxel of the LOM is masked will be marked as excluded (255).
Returns:
tuple of:
corner of output subvolume as (x, y, z)
uint8 ndarray of active fraction voxels
"""
seg_array = segmentation.clear_dust(seg_array, min_size=min_size)
assert seg_array.ndim == 3
lom_radius = np.array(lom_radius)
lom_radius_zyx = lom_radius[::-1]
lom_diam_zyx = 2 * lom_radius_zyx + 1
def _sel(i):
if i == 0:
return slice(None)
else:
return slice(i, -i)
valid_sel = [_sel(x) for x in lom_radius_zyx]
output = np.zeros(seg_array[valid_sel].shape, dtype=np.uint8)
corner = lom_radius
if exclusion_regions is not None:
sz, sy, sx = output.shape
hz, hy, hx = np.mgrid[:sz, :sy, :sx]
hz += corner[2]
hy += corner[1]
hx += corner[0]
for x, y, z, r in exclusion_regions:
mask = (hx - x)**2 + (hy - y)**2 + (hz - z)**2 <= r**2
output[mask] = 255
labels = set(np.unique(seg_array))
if _rank == 0:
logging.info('Number of labels: %d', len(labels))
logging.info(labels)
logging.info(id_whitelist)
if id_whitelist is not None:
id_whitelist = {int(x) for x in id_whitelist}
labels &= id_whitelist
if _rank == 0:
logging.info('Labels to process after whitelist: %d', len(labels))
mask = load_mask(mask_configs,
bounding_box.BoundingBox(
start=(0, 0, 0), size=seg_array.shape[::-1]),
lom_diam_zyx)
if mask is not None:
output[mask] = 255
fov_volume = np.prod(lom_diam_zyx)
labelsarray = np.array(list(labels),dtype=np.int32)
# Don't create a mask for the background component.
labelsarray = labelsarray[labelsarray != 0]
labelsarray.sort()
labelsarray = labelsarray[get_slice(len(labelsarray),_size,_rank)]
reducedoutput = np.zeros(seg_array[valid_sel].shape, dtype=np.uint8)
if _rank == 0:
logging.info('Labels to process: %d', len(labels))
logging.info('Labels to process on rank 0: %d', len(labelsarray))
for l in labelsarray:
tstart = time()
object_mask = (seg_array == l)
svt = _summed_volume_table(object_mask)
active_fraction = _query_summed_volume(svt, lom_diam_zyx) / fov_volume
assert active_fraction.shape == output.shape
# Drop context that is only necessary for computing the active fraction
# (i.e. one LOM radius in every direction).
object_mask = object_mask[valid_sel]
# TODO(mjanusz): Use np.digitize here.
for i, th in enumerate(thresholds):
output[object_mask & (active_fraction < th) & (output == 0)] = i + 1
output[object_mask & (active_fraction >= thresholds[-1]) &
(output == 0)] = len(thresholds) + 1
if _rank == 0:
logging.info('Done processing %d in %f seconds', l, time()-tstart)
_comm.Reduce(output,reducedoutput,MPI.SUM,root=0)
if _rank == 0:
logging.info('Nonzero values: %d', np.sum(output > 0))
return corner, reducedoutput
def adjust_bboxes(bboxes, lom_radius):
ret = []
for bbox in bboxes:
bbox = bbox.adjusted_by(start=lom_radius, end=-lom_radius)
if np.all(bbox.size > 0):
ret.append(bbox)
return ret
def main(argv):
del argv # Unused.
tzero = time()
path, dataset = FLAGS.input_volume.split(':')
if _rank == 0:
logging.info('Read hdf5 file {}'.format(path))
with h5py.File(path,'r') as f:
segmentation = f[dataset]
if _rank == 0:
logging.info('Done reading.')
bboxes = []
for name, v in segmentation.attrs.items():
if name.startswith('bounding_boxes'):
for bbox in v:
bboxes.append(bounding_box.BoundingBox(bbox[0], bbox[1]))
if not bboxes:
bboxes.append(
bounding_box.BoundingBox(
start=(0, 0, 0), size=segmentation.shape[::-1]))
shape = segmentation.shape
lom_radius = [int(x) for x in FLAGS.lom_radius]
if _rank == 0:
logging.info('Compute partitions')
logging.info('Segmantion shape: {}'.format(shape))
logging.info('Bounding boxes: {}'.format(bboxes))
corner, partitions = compute_partitions(
segmentation[...], [float(x) for x in FLAGS.thresholds], lom_radius,
FLAGS.id_whitelist, FLAGS.exclusion_regions, FLAGS.mask_configs,
FLAGS.min_size)
bboxes = adjust_bboxes(bboxes, np.array(lom_radius))
path, dataset = FLAGS.output_volume.split(':')
if _rank == 0:
logging.info('Partition shape : {}'.format(partitions.shape))
logging.info('Bounding boxes : {}'.format(bboxes))
logging.info('Corner : {}'.format(corner))
logging.info('Creating hdf5 file for the partitions...')
with h5py.File(path, 'w') as f:
ds = f.create_dataset(dataset, shape=shape, dtype=np.uint8, fillvalue=255,
chunks=True, compression='gzip')
s = partitions.shape
ds[corner[2]:corner[2] + s[0],
corner[1]:corner[1] + s[1],
corner[0]:corner[0] + s[2]] = partitions
ds.attrs['bounding_boxes'] = [(b.start, b.size) for b in bboxes]
ds.attrs['partition_counts'] = np.array(np.unique(partitions,
return_counts=True))
logging.info('Finished in {} seconds.'.format(time()-tzero))
return 0
if __name__ == '__main__':
flags.mark_flag_as_required('input_volume')
flags.mark_flag_as_required('output_volume')
flags.mark_flag_as_required('thresholds')
flags.mark_flag_as_required('lom_radius')
app.run(main)