-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathxparm.py
217 lines (195 loc) · 8.92 KB
/
xparm.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
"""
xparm.py
(c) RIKEN 2015. All rights reserved.
Author: Keitaro Yamashita
This software is released under the new BSD License; see LICENSE.
"""
import numpy
from xds import get_xdsinp_keyword
from util import safe_float
class XPARM:
def __init__(self, xparm_file=None):
if xparm_file is not None:
self.parse_xparm_file(xparm_file)
else:
self.starting_frame = 1
self.starting_angle = 0.
self.osc_range = -1.
self.rotation_axis = numpy.array((1.,0.,0.))
self.wavelength = -1.
self.incident_beam = numpy.array((0.,0.,1.))
self.nx, self.ny = 0, 0
self.qx, self.qy = 0., 0.
self.distance = 0.
self.origin = numpy.array((0., 0.))
self.X_axis = numpy.array((1., 0., 0.))
self.Y_axis = numpy.array((0., 1., 0.))
self.Z_axis = numpy.array((0., 0., 1.))
self.spacegroup = 1
self.unit_cell = numpy.array((100., 100., 100., 90., 90., 90.))
self.a_axis = numpy.array((100., 0., 0.))
self.b_axis = numpy.array((0., 100., 0.))
self.c_axis = numpy.array((0., 0., 100.))
# __init__()
def parse_xparm_file(self, xparm_file):
lines = open(xparm_file).readlines()
is_new_format = "XPARM.XDS" in lines[0]
if not is_new_format:
starting_frame, starting_angle, osc_range, rotx, roty, rotz = lines[0].split()
wavelength, ibeamx, ibeamy, ibeamz = lines[1].split()
nx, ny, qx, qy = lines[2].split()
distance, orgx, orgy = lines[3].split()
Xx, Xy, Xz = lines[4].split()
Yx, Yy, Yz = lines[5].split()
Zx, Zy, Zz = lines[6].split()
spacegroup, a, b, c, alpha, beta, gamma = lines[7].split()
ax, ay, az = lines[8].split()
bx, by, bz = lines[9].split()
cx, cy, cz = lines[10].split()
else:
starting_frame, starting_angle, osc_range, rotx, roty, rotz = lines[1].split()
wavelength, ibeamx, ibeamy, ibeamz = lines[2].split()
spacegroup, a, b, c, alpha, beta, gamma = lines[3].split()
ax, ay, az = lines[4].split()
bx, by, bz = lines[5].split()
cx, cy, cz = lines[6].split()
nseg, nx, ny, qx, qy = lines[7].split()
orgx, orgy, distance = lines[8].split()
Xx, Xy, Xz = lines[9].split()
Yx, Yy, Yz = lines[10].split()
Zx, Zy, Zz = lines[11].split()
self.starting_frame = int(starting_frame)
self.starting_angle = float(starting_angle)
self.osc_range = float(osc_range)
self.rotation_axis = numpy.array((float(rotx), float(roty), float(rotz)))
self.wavelength = float(wavelength)
self.incident_beam = numpy.array((float(ibeamx), float(ibeamy), float(ibeamz)))
self.nx = float(nx)
self.ny = float(ny)
self.qx = float(qx)
self.qy = float(qy)
self.distance = float(distance)
self.origin = numpy.array((float(orgx), float(orgy)))
self.X_axis = numpy.array((float(Xx), float(Xy), float(Xz)))
self.Y_axis = numpy.array((float(Yx), float(Yy), float(Yz)))
self.Z_axis = numpy.array((float(Zx), float(Zy), float(Zz)))
self.spacegroup = int(spacegroup)
self.unit_cell = numpy.array((float(a), float(b), float(c), float(alpha), float(beta), float(gamma)))
self.a_axis = numpy.array(list(map(safe_float, (ax, ay, az))))
self.b_axis = numpy.array(list(map(safe_float, (bx, by, bz))))
self.c_axis = numpy.array(list(map(safe_float, (cx, cy, cz))))
# parse_xparm_file()
def set_info_from_xdsinp(self, xdsinp):
# XXX x, y, z axes
table = [("STARTING_FRAME", "starting_frame", lambda x: int(x)),
("STARTING_ANGLE", "starting_angle", lambda x: float(x)),
("OSCILLATION_RANGE", "osc_range", lambda x: float(x)),
("ROTATION_AXIS", "rotation_axis", lambda x: numpy.array([float(y) for y in x.split()])),
("X-RAY_WAVELENGTH", "wavelength", lambda x: float(x)),
("INCIDENT_BEAM_DIRECTION", "incident_beam", lambda x: numpy.array([float(y) for y in x.split()])),
("NX", "nx", lambda x: int(x)),
("NY", "ny", lambda x: int(x)),
("QX", "qx", lambda x: float(x)),
("QY", "qy", lambda x: float(x)),
("DETECTOR_DISTANCE", "distance", lambda x: float(x)),
("SPACE_GROUP_NUMBER", "spacegroup", lambda x: int(x)),
("UNIT_CELL_CONSTANTS", "unit_cell", lambda x: numpy.array([float(y) for y in x.split()])),
("UNIT_CELL_A-AXIS", "a_axis", lambda x: numpy.array([float(y) for y in x.split()])),
("UNIT_CELL_B-AXIS", "b_axis", lambda x: numpy.array([float(y) for y in x.split()])),
("UNIT_CELL_C-AXIS", "c_axis", lambda x: numpy.array([float(y) for y in x.split()]))
]
inp = dict(get_xdsinp_keyword(xdsinp)) # I believe dict() removes duplicated parameters and keeps last.
for k, at, f in table:
if k in inp and inp[k].strip() != "":
setattr(self, at, f(inp[k]))
if "ORGX" in inp:
self.origin[0] = float(inp["ORGX"])
if "ORGY" in inp:
self.origin[1] = float(inp["ORGY"])
# set_info_from_xdsinp()
def xparm_str(self, old_format=False):
assert not old_format # Currently, only new format is supported!
xparm_str = """ XPARM.XDS VERSION March 30, 2013
%6d%14.4f%10.4f%10.6f%10.6f%10.6f
%15.6f%15.6f%15.6f%15.6f
%6d%12.6f%12.6f%12.6f%8.3f%8.3f%8.3f
%15.6f%15.6f%15.6f
%15.6f%15.6f%15.6f
%15.6f%15.6f%15.6f
%10d%10d%10d%12.6f%12.6f
%15.6f%15.6f%15.6f
%15.6f%15.6f%15.6f
%15.6f%15.6f%15.6f
%15.6f%15.6f%15.6f
%10d%10d%10d%10d%10d
%8.2f%8.2f%8.2f%9.5f%9.5f%9.5f%9.5f%9.5f%9.5f
""" % (self.starting_frame, self.starting_angle, self.osc_range, self.rotation_axis[0], self.rotation_axis[1], self.rotation_axis[2],
self.wavelength, self.incident_beam[0], self.incident_beam[1], self.incident_beam[2],
self.spacegroup, self.unit_cell[0], self.unit_cell[1], self.unit_cell[2], self.unit_cell[3], self.unit_cell[4], self.unit_cell[5],
self.a_axis[0], self.a_axis[1], self.a_axis[2],
self.b_axis[0], self.b_axis[1], self.b_axis[2],
self.c_axis[0], self.c_axis[1], self.c_axis[2],
1, self.nx, self.ny, self.qx, self.qy,
self.origin[0], self.origin[1], self.distance,
self.X_axis[0], self.X_axis[1], self.X_axis[2],
self.Y_axis[0], self.Y_axis[1], self.Y_axis[2],
self.Z_axis[0], self.Z_axis[1], self.Z_axis[2],
1, 1, self.nx, 1, self.ny,
0., 0., 0., 1., 0., 0., 0., 1., 0.,
)
return xparm_str
# xparm_str()
def crystal_symmetry(self):
from cctbx import crystal
return crystal.symmetry(tuple(self.unit_cell),
self.spacegroup)
# crystal_symmetry()
# class XPARM
def get_xparm_from_integrate_lp(lpfile, frame):
assert 0 < frame
keys = {"beam direction": "DIRECT BEAM COORDINATES (REC. ANGSTROEM)",
"beam center": "DETECTOR ORIGIN (PIXELS) AT",
"distance": "CRYSTAL TO DETECTOR DISTANCE (mm)",
"rotation axis": "LAB COORDINATES OF ROTATION AXIS",
"a axis": "COORDINATES OF UNIT CELL A-AXIS",
"b axis": "COORDINATES OF UNIT CELL B-AXIS",
"c axis": "COORDINATES OF UNIT CELL C-AXIS",
"cell": "UNIT CELL PARAMETERS",
"spacegroup": "SPACE GROUP NUMBER"
}
data = {}
flag_read = False
for l in open(lpfile):
if "PROCESSING OF IMAGES" in l:
flag_read = False
l = l.strip()
first, last = [int(x.strip()) for x in l[l.index("PROCESSING OF IMAGES")+len("PROCESSING OF IMAGES"):].split("...")]
if first <= frame <= last:
flag_read = True
if flag_read:
for key, s in keys.items():
if s in l:
l = l.strip()
val = [float(x.strip()) for x in l[l.index(s)+len(s):].split()]
data[key] = val
beam = data["beam direction"]
rotaxis = data["rotation axis"]
distance = data["distance"][0]
orgx, orgy = data["beam center"]
spacegroup = data["spacegroup"][0]
a, b, c, alpha, beta, gamma = data["cell"]
aaxis = data["a axis"]
baxis = data["b axis"]
caxis = data["c axis"]
xp = XPARM("XPARM.XDS")
xp.rotation_axis = numpy.array(rotaxis)
xp.incident_beam = numpy.array(beam)
xp.spacegroup = spacegroup
xp.unit_cell = numpy.array((a, b, c, alpha, beta, gamma))
xp.a_axis = numpy.array(aaxis)
xp.b_axis = numpy.array(baxis)
xp.c_axis = numpy.array(caxis)
xp.origin = numpy.array((orgx, orgy))
xp.distance = distance
return xp.xparm_str()
# get_xparm_from_integrate_lp()