-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathukf.h
114 lines (84 loc) · 2.82 KB
/
ukf.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
#ifndef UKF_H
#define UKF_H
#include "Eigen/Dense"
#include "measurement_package.h"
class UKF
{
public:
/**
* Constructor
*/
UKF();
/**
* Destructor
*/
virtual ~UKF();
/**
* ProcessMeasurement
* @param measurement_package The latest measurement data of either radar or laser
*/
void ProcessMeasurement(MeasurementPackage measurement_package);
/**
* Prediction Predicts sigma points, the state, and the state covariance
* matrix
* @param delta_t Time between k and k+1 in s
*/
void Prediction(double delta_t);
/**
* Updates the state and the state covariance matrix using a laser measurement
* @param measurement_package The measurement at k+1
*/
void UpdateLidar(const MeasurementPackage & measurement_package);
/**
* Updates the state and the state covariance matrix using a radar measurement
* @param measurement_package The measurement at k+1
*/
void UpdateRadar(const MeasurementPackage & measurement_package);
/**
*
* @return state vector: [pos1 pos2 vel_abs yaw_angle yaw_rate] in SI units and rad
*/
const Eigen::VectorXd & State() const;
private:
Eigen::MatrixXd AugmentedSigmaPoints() const;
void PredictSigmaPoints(Eigen::MatrixXd *Xsig_pred, double delta_t, const Eigen::MatrixXd & Xsig_aug);
void PredictMeanAndCovariance();
private:
// initially set to false, set to true in first call of ProcessMeasurement
bool is_initialized_;
// if this is false, laser measurements will be ignored (except for init)
bool use_laser_;
// if this is false, radar measurements will be ignored (except for init)
bool use_radar_;
// state vector: [pos1 pos2 vel_abs yaw_angle yaw_rate] in SI units and rad
Eigen::VectorXd x_;
// state covariance matrix
Eigen::MatrixXd P_;
// predicted sigma points matrix
Eigen::MatrixXd Xsig_pred_;
// time when the state is true, in us
long long time_us_;
// Process noise standard deviation longitudinal acceleration in m/s^2
double std_a_;
// Process noise standard deviation yaw acceleration in rad/s^2
double std_yawdd_;
// Laser measurement noise standard deviation position1 in m
double std_laspx_;
// Laser measurement noise standard deviation position2 in m
double std_laspy_;
// Radar measurement noise standard deviation radius in m
double std_radr_;
// Radar measurement noise standard deviation angle in rad
double std_radphi_;
// Radar measurement noise standard deviation radius change in m/s
double std_radrd_;
// Weights of sigma points
Eigen::VectorXd weights_;
// State dimension
int n_x_;
// Augmented state dimension
int n_aug_;
// Sigma point spreading parameter
double lambda_;
};
#endif // UKF_H