We read every piece of feedback, and take your input very seriously.
To see all available qualifiers, see our documentation.
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Getting strange, non deterministic error when doing fit. This is on the kaggle environment, just using !pip install autokeras
--------------------------------------------------------------------------- TypeError Traceback (most recent call last) Cell In[3], line 92 87 with CustomObjectScope({'custom_metric': custom_metric}): 88 # Initialize and train the AutoKeras structured data classifier 89 clf = StructuredDataClassifier(max_trials=mts,metrics=[custom_metric], 90 objective = kerastuner.Objective("val_custom_metric", direction="min"), 91 project_name = f'sdc30h_{split}') ---> 92 clf.fit(X_train, y_train, validation_data = [X_test, y_test], epochs = 1000, 93 verbose=0, callbacks=[CustomCallback(), 94 tf.keras.callbacks.EarlyStopping( 95 monitor="val_custom_metric", 96 min_delta=0, 97 patience=100, 98 verbose=1, 99 mode="min", 100 baseline=None, 101 restore_best_weights=True, 102 start_from_epoch=0, 103 )]) # Set verbose to 1 or 2 to see the training progress 104 print("y_test", list(y_test), list(test_index)) 105 metric = clf.evaluate(X_test, y_test, verbose=0) File /opt/conda/lib/python3.10/site-packages/autokeras/tasks/structured_data.py:326, in StructuredDataClassifier.fit(self, x, y, epochs, callbacks, validation_split, validation_data, **kwargs) 279 def fit( 280 self, 281 x=None, (...) 287 **kwargs 288 ): 289 """Search for the best model and hyperparameters for the AutoModel. 290 291 # Arguments (...) 324 validation loss values and validation metrics values (if applicable). 325 """ --> 326 history = super().fit( 327 x=x, 328 y=y, 329 epochs=epochs, 330 callbacks=callbacks, 331 validation_split=validation_split, 332 validation_data=validation_data, 333 **kwargs 334 ) 335 return history File /opt/conda/lib/python3.10/site-packages/autokeras/tasks/structured_data.py:139, in BaseStructuredDataPipeline.fit(self, x, y, epochs, callbacks, validation_split, validation_data, **kwargs) 135 validation_data = self._read_from_csv(x_val, y_val) 137 self.check_in_fit(x) --> 139 history = super().fit( 140 x=x, 141 y=y, 142 epochs=epochs, 143 callbacks=callbacks, 144 validation_split=validation_split, 145 validation_data=validation_data, 146 **kwargs 147 ) 148 return history File /opt/conda/lib/python3.10/site-packages/autokeras/auto_model.py:292, in AutoModel.fit(self, x, y, batch_size, epochs, callbacks, validation_split, validation_data, verbose, **kwargs) 287 if validation_data is None and validation_split: 288 dataset, validation_data = data_utils.split_dataset( 289 dataset, validation_split 290 ) --> 292 history = self.tuner.search( 293 x=dataset, 294 epochs=epochs, 295 callbacks=callbacks, 296 validation_data=validation_data, 297 validation_split=validation_split, 298 verbose=verbose, 299 **kwargs 300 ) 302 return history File /opt/conda/lib/python3.10/site-packages/autokeras/engine/tuner.py:193, in AutoTuner.search(self, epochs, callbacks, validation_split, verbose, **fit_kwargs) 191 self._try_build(hp) 192 self.oracle.update_space(hp) --> 193 super().search( 194 epochs=epochs, callbacks=new_callbacks, verbose=verbose, **fit_kwargs 195 ) 197 # Train the best model use validation data. 198 # Train the best model with enough number of epochs. 199 if validation_split > 0 or early_stopping_inserted: File /opt/conda/lib/python3.10/site-packages/keras_tuner/engine/base_tuner.py:231, in BaseTuner.search(self, *fit_args, **fit_kwargs) 229 self.on_trial_begin(trial) 230 self._try_run_and_update_trial(trial, *fit_args, **fit_kwargs) --> 231 self.on_trial_end(trial) 232 self.on_search_end() File /opt/conda/lib/python3.10/site-packages/keras_tuner/engine/base_tuner.py:335, in BaseTuner.on_trial_end(self, trial) 329 def on_trial_end(self, trial): 330 """Called at the end of a trial. 331 332 Args: 333 trial: A `Trial` instance. 334 """ --> 335 self.oracle.end_trial(trial) 336 # Display needs the updated trial scored by the Oracle. 337 self._display.on_trial_end(self.oracle.get_trial(trial.trial_id)) File /opt/conda/lib/python3.10/site-packages/keras_tuner/engine/oracle.py:107, in synchronized.<locals>.wrapped_func(*args, **kwargs) 105 LOCKS[oracle].acquire() 106 THREADS[oracle] = thread_name --> 107 ret_val = func(*args, **kwargs) 108 if need_acquire: 109 THREADS[oracle] = None File /opt/conda/lib/python3.10/site-packages/keras_tuner/engine/oracle.py:434, in Oracle.end_trial(self, trial) 432 if not self._retry(trial): 433 self.end_order.append(trial.trial_id) --> 434 self._check_consecutive_failures() 436 self._save_trial(trial) 437 self.save() File /opt/conda/lib/python3.10/site-packages/keras_tuner/engine/oracle.py:387, in Oracle._check_consecutive_failures(self) 384 consecutive_failures = 0 385 if consecutive_failures == self.max_consecutive_failed_trials: 386 raise RuntimeError( --> 387 "Number of consecutive failures excceeded the limit " 388 f"of {self.max_consecutive_failed_trials}.\n" 389 + trial.message 390 ) TypeError: can only concatenate str (not "NoneType") to str
The text was updated successfully, but these errors were encountered:
I am also encountering this issue.
Sorry, something went wrong.
No branches or pull requests
Getting strange, non deterministic error when doing fit. This is on the kaggle environment, just using !pip install autokeras
The text was updated successfully, but these errors were encountered: