You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
Hi, I'm looking for a solution to my issue, and I tried several suggestions with no success. I hope someone can help me with this.
this is my code
import os
import sys
print(sys.path)
#import keras
import numpy as np
from sklearn.datasets import load_files
from keras.models import load_model
import tensorflow as tf
import autokeras as ak
from datetime import datetime
# dataset = keras.utils.get_file(
# fname="aclImdb.tar.gz",
# origin="http://ai.stanford.edu/~amaas/data/sentiment/aclImdb_v1.tar.gz",
# extract=True,
# )
# set path to dataset
IMDB_DATADIR = "/root/blazehttp/cmdi_single"
classes = ["pos", "neg"]
train_data = load_files(
os.path.join(IMDB_DATADIR, "train"), shuffle=True, categories=classes
)
test_data = load_files(
os.path.join(IMDB_DATADIR, "test"), shuffle=False, categories=classes
)
x_train = np.array(train_data.data)[:10]
y_train = np.array(train_data.target)[:10]
x_test = np.array(test_data.data)[:20]
y_test = np.array(test_data.target)[:20]
print(x_train.shape) # (25000,)
print(y_train.shape) # (25000, 1)
y_train = y_train.reshape(-1, 1)
print(y_train.shape) # (25000, 1)
print("x_train[0][:50]:",x_train[0][:50]) # this film was just brilliant casting
clf = ak.TextClassifier(
overwrite=False, max_trials=1,directory="autokeras_model_cmd",project_name="autokeras_project_cmd"
) # It only tries 1 model as a quick demo.
clf.fit(x_train, y_train,epochs=1, batch_size=2) # Added validation data for monitoring performance)
print("start test:")
predicted_y = clf.predict(x_test)
print("predicted_y:",predicted_y)
print("x_test:",x_test)
print("y_test:",y_test)
model = clf.export_model()
print(type(model)) # <class 'tensorflow.python.keras.engine.training.Model'>
#时间字符串
now = datetime.now()
formatted_str_ = now.strftime("%Y-%m-%d-%H-%M-%S")
file_name = "model_autokeras.keras" #"model_autokeras_" + formatted_str_ + ".keras"
print("keras_model.summary:",file_name)
model.summary()
print("model.save:",file_name)
model.save(file_name) # 修复方式:确保文件扩展名为.keras
loaded_model = load_model(
file_name,custom_objects=ak.CUSTOM_OBJECTS
)
Non-trainable params: 0 (0.00 B)
model.save: model_autokeras_2024-10-10-10-11-44.keras
Traceback (most recent call last):
File "/root/test/automl/cmdi-test.py", line 73, in <module>
loaded_model = load_model(
File "/usr/local/lib/python3.10/dist-packages/keras/src/saving/saving_api.py", line 189, in load_model
return saving_lib.load_model(
File "/usr/local/lib/python3.10/dist-packages/keras/src/saving/saving_lib.py", line 365, in load_model
return _load_model_from_fileobj(
File "/usr/local/lib/python3.10/dist-packages/keras/src/saving/saving_lib.py", line 442, in _load_model_from_fileobj
model = _model_from_config(
File "/usr/local/lib/python3.10/dist-packages/keras/src/saving/saving_lib.py", line 431, in _model_from_config
model = deserialize_keras_object(
File "/usr/local/lib/python3.10/dist-packages/keras/src/saving/serialization_lib.py", line 718, in deserialize_keras_object
instance = cls.from_config(inner_config)
File "/usr/local/lib/python3.10/dist-packages/keras/src/models/model.py", line 526, in from_config
return functional_from_config(
File "/usr/local/lib/python3.10/dist-packages/keras/src/models/functional.py", line 518, in functional_from_config
process_node(layer, node_data)
File "/usr/local/lib/python3.10/dist-packages/keras/src/models/functional.py", line 465, in process_node
layer(*args, **kwargs)
File "/usr/local/lib/python3.10/dist-packages/keras/src/utils/traceback_utils.py", line 122, in error_handler
raise e.with_traceback(filtered_tb) from None
File "/usr/local/lib/python3.10/dist-packages/keras_nlp/src/utils/tensor_utils.py", line 74, in wrapper
x = fn(self, x, y=y, sample_weight=sample_weight, **kwargs)
File "/usr/local/lib/python3.10/dist-packages/keras_nlp/src/models/text_classifier_preprocessor.py", line 110, in call
x = tuple(self.tokenizer(segment) for segment in x)
File "/usr/local/lib/python3.10/dist-packages/keras_nlp/src/models/text_classifier_preprocessor.py", line 110, in <genexpr>
x = tuple(self.tokenizer(segment) for segment in x)
File "/usr/local/lib/python3.10/dist-packages/keras_nlp/src/utils/tensor_utils.py", line 62, in wrapper
x = fn(self, x, **kwargs)
File "/usr/local/lib/python3.10/dist-packages/keras_nlp/src/tokenizers/tokenizer.py", line 205, in call
return self.tokenize(inputs, *args, **kwargs)
File "/usr/local/lib/python3.10/dist-packages/keras_nlp/src/utils/tensor_utils.py", line 62, in wrapper
x = fn(self, x, **kwargs)
File "/usr/local/lib/python3.10/dist-packages/keras_nlp/src/tokenizers/word_piece_tokenizer.py", line 475, in tokenize
self._check_vocabulary()
File "/usr/local/lib/python3.10/dist-packages/keras_nlp/src/tokenizers/word_piece_tokenizer.py", line 468, in _check_vocabulary
raise ValueError(
ValueError: Exception encountered when calling BertTextClassifierPreprocessor.call().
Could not automatically infer the output shape / dtype of 'bert_text_classifier_preprocessor' (of type BertTextClassifierPreprocessor). Either the `BertTextClassifierPreprocessor.call()` method is incorrect, or you need to implement the `BertTextClassifierPreprocessor.compute_output_spec() / compute_output_shape()` method. Error encountered:
Exception encountered when calling BertTokenizer.call().
No vocabulary has been set for WordPieceTokenizer. Make sure to pass a `vocabulary` argument when creating the layer.
Arguments received by BertTokenizer.call():
? inputs=tf.Tensor(shape=(None,), dtype=string)
? args=<class 'inspect._empty'>
? training=None
? kwargs=<class 'inspect._empty'>
Arguments received by BertTextClassifierPreprocessor.call():
? args=('<KerasTensor shape=(None,),\
Setup Details
Include the details about the versions of:
Hi, I'm looking for a solution to my issue, and I tried several suggestions with no success. I hope someone can help me with this.
this is my code
Setup Details
Include the details about the versions of:
Python 3.10.15
autokeras 2.0.0
keras 3.6.0
keras-nlp 0.15.1
keras-tuner 1.4.7
numpy 1.26.4
tensorflow 2.17.0
tensorflow-io-gcs-filesystem 0.37.1
tensorflow-text 2.17.0
The text was updated successfully, but these errors were encountered: