v0.4.1
The 0.4.1 release is a minor release with new model architectures and compilation defaults for task models. If you encounter any problems or have questions, please open an issue!
Summary
- Added compilation defaults for all task models (e.g.
keras_nlp.models.BertClassifier
). No existing functionality is changed, but users of task models can now skip calling.compile()
and use default learning rates and optimization strategies provided by the library. - Added
keras_nlp.models.AlbertBackbone
,keras_nlp.models.AlbertClassifier
, preprocessor, and tokenizer layers for pre-trained ALBERT models. - Added
keras_nlp.models.FNetBackbone
,keras_nlp.models.FNetClassifier
, preprocessor, and tokenizer layers for pre-trained FNet models. - Added
keras_nlp.models.DebertaV3Backbone
,keras_nlp.models.DebertaV3Classifier
, preprocessor, and tokenizer layers for pre-trained DeBERTaV3 models.
What's Changed
- Update python version in readme to 3.8 by @haifeng-jin in #618
- Modify our pip install line so we upgrade tf by @mattdangerw in #616
- Use Adam optimizer for quick start by @mattdangerw in #620
- Clean up class name and
self
in calls tosuper()
by @mbrukman in #628 - Update word_piece_tokenizer.py by @ADITYADAS1999 in #617
- Add DeBERTaV3 Conversion Script by @abheesht17 in #633
- Add AlbertTokenizer and AlbertPreprocessor by @abheesht17 in #627
- Create
Backbone
base class by @jbischof in #621 - Add TPU testing by @chenmoneygithub in #591
- Add Base Preprocessor Class by @abheesht17 in #638
- Add keras_nlp.samplers by @chenmoneygithub in #563
- Add ALBERT Backbone by @abheesht17 in #622
- Add a small script to count parameters in our presets by @mattdangerw in #610
- Clean up examples/ directory by @ADITYADAS1999 in #637
- Fix Small BERT Typo by @abheesht17 in #651
- Rename examples/bert -> examples/bert_pretraining by @mattdangerw in #647
- Add FNet Preprocessor by @abheesht17 in #646
- Add FNet Backbone by @abheesht17 in #643
- Small DeBERTa Docstring Fixes by @abheesht17 in #666
- Add Fenced Docstring Testing by @abheesht17 in #640
- Corrected the epsilon value by @soma2000-lang in #665
- Consolidate docstring formatting weirdness in Backbone and Preprocessor base classes by @mattdangerw in #654
- Fix
value_dim
inTransformerDecoder
's cross-attn layer by @abheesht17 in #667 - Add ALBERT Presets by @abheesht17 in #655
- Add Base Task Class by @abheesht17 in #671
- Implement TopP, TopK and Beam samplers by @chenmoneygithub in #652
- Add FNet Presets by @abheesht17 in #659
- Bump the year to 2023 by @mattdangerw in #679
- Add BART Backbone by @abheesht17 in #661
- Handle trainable and name in the backbone base class by @mattdangerw in #680
- Ignore Task Docstring for Testing by @abheesht17 in #683
- Light-weight benchmarking script by @NusretOzates in #664
- Conditionally import tf_text everywhere by @mattdangerw in #684
- Expose
token_embedding
as a Backbone Property by @abheesht17 in #676 - Move
from_preset
to base tokenizer classes by @shivance in #673 - add f_net_classifier and f_net_classifier_test by @ADITYADAS1999 in #670
- import rouge_scorer directly from rouge_score package by @sampathweb in #691
- Fix typo in requirements file juypter -> jupyter by @mattdangerw in #693
- Temporary fix to get nightly green again by @mattdangerw in #696
- GPT2 Text Generation APIs by @chenmoneygithub in #592
- Run keras saving tests on nightly and fix RobertaClassifier test by @mattdangerw in #692
- Speed up pip install keras-nlp; simplify deps by @mattdangerw in #697
- Add
AlbertClassifier
by @shivance in #668 - Make tokenizer, backbone, preprocessor properties settable on base class by @mattdangerw in #700
- Update to latest black by @mattdangerw in #708
- RobertaMaskedLM task and preprocessor by @mattdangerw in #653
- Default compilation for BERT/RoBERTa classifiers by @jbischof in #695
- Add start/end token padding to
GPT2Preprocessor
by @chenmoneygithub in #704 - Don't install tf stable when building our nightly image by @mattdangerw in #711
- Add OPT Backbone and Tokenizer by @mattdangerw in #699
- Small OPT Doc-string Edits by @abheesht17 in #716
- Default compilation other classifiers by @Plutone11011 in #714
- Add BartTokenizer and BART Presets by @abheesht17 in #685
- Add an add_prefix_space Arg in BytePairTokenizer by @shivance in #715
- Opt presets by @mattdangerw in #707
- fix import of tensorflow_text in tf_utils by @sampathweb in #723
- Check for masked token in roberta tokenizer by @mattdangerw in #742
- Improve test coverage for special tokens in model tokenizers by @mattdangerw in #743
- Fix the sampler truncation strategy by @chenmoneygithub in #713
- Add ALBERT Conversion Script by @abheesht17 in #736
- Add FNet Conversion Script by @abheesht17 in #737
- Add BART Conversion Script by @abheesht17 in #739
- Pass Correct LayerNorm Epsilon value to TransformerEncoder in Backbones by @TheAthleticCoder in #731
- Improving the layer Description. by @Neeshamraghav012 in #734
- Adding ragged support to SinePositionEncoding by @apupneja in #751
- Fix trailing space by @mattdangerw in #755
- Adding an AlbertMaskedLM task model and preprocessor by @shivance in #725
- New docstring example for TokenAndPosition Embedding layer. by @Neeshamraghav012 in #760
- Add a note for TPU issues for deberta_v3 by @mattdangerw in #758
- Add missing exports to models API by @mattdangerw in #763
- Autogenerate preset table by @Cyber-Machine in #690
- Remove work in progress API for 0.4.1 release by @mattdangerw in #765
- Version bump to 0.4.1.dev0 by @mattdangerw in #766
- Version bump to 0.4.1 by @mattdangerw in #768
New Contributors
- @haifeng-jin made their first contribution in #618
- @mbrukman made their first contribution in #628
- @soma2000-lang made their first contribution in #665
- @NusretOzates made their first contribution in #664
- @shivance made their first contribution in #673
- @Plutone11011 made their first contribution in #714
- @TheAthleticCoder made their first contribution in #731
- @Neeshamraghav012 made their first contribution in #734
- @Cyber-Machine made their first contribution in #690
Full Changelog: v0.4.0...v0.4.1