|
| 1 | +import re |
| 2 | + |
| 3 | +from keras.src.api_export import keras_export |
| 4 | +from keras.src.ops.core import shape |
| 5 | +from keras.src.ops.numpy import prod |
| 6 | +from keras.src.ops.numpy import reshape |
| 7 | +from keras.src.ops.numpy import transpose |
| 8 | + |
| 9 | + |
| 10 | +def __create_axes_map(axes, input_shape, axes_lengths): |
| 11 | + axes_map = {} |
| 12 | + |
| 13 | + for axis, dim in zip(axes, input_shape): |
| 14 | + # Check for grouped axes pattern, e.g., "(h1 h)" |
| 15 | + grouped_axes = re.match(r"\(([\w\s]+)\)", axis) |
| 16 | + |
| 17 | + if grouped_axes: |
| 18 | + inner_axes = grouped_axes.group(1).split() |
| 19 | + known_axes = [a for a in inner_axes if a in axes_lengths] |
| 20 | + inferred_axes = [a for a in inner_axes if a not in axes_lengths] |
| 21 | + |
| 22 | + if inferred_axes: |
| 23 | + inferred_axis = inferred_axes[0] |
| 24 | + known_product = prod([axes_lengths[a] for a in known_axes]) |
| 25 | + axes_lengths[inferred_axis] = dim // known_product |
| 26 | + |
| 27 | + axes_map.update({a: axes_lengths[a] for a in inner_axes}) |
| 28 | + else: |
| 29 | + axes_map[axis] = dim |
| 30 | + |
| 31 | + return axes_map |
| 32 | + |
| 33 | + |
| 34 | +def __create_grouped_axes(axes): |
| 35 | + grouped_output_axes = [] |
| 36 | + for axis in axes: |
| 37 | + grouped_axes = re.match(r"\(([\w\s]+)\)", axis) |
| 38 | + |
| 39 | + if grouped_axes: |
| 40 | + inner_axes = grouped_axes.group(1).split() |
| 41 | + grouped_output_axes.append(inner_axes) |
| 42 | + else: |
| 43 | + grouped_output_axes.append([axis]) |
| 44 | + |
| 45 | + return grouped_output_axes |
| 46 | + |
| 47 | + |
| 48 | +def __flatten_group(axes): |
| 49 | + return [x for xs in axes for x in xs] |
| 50 | + |
| 51 | + |
| 52 | +def __get_transpose_order(from_shape, to_shape): |
| 53 | + flattened_from_shape = __flatten_group(__create_grouped_axes(from_shape)) |
| 54 | + |
| 55 | + return [flattened_from_shape.index(dim) for dim in to_shape] |
| 56 | + |
| 57 | + |
| 58 | +def __compute_output_shape(axes_map, grouped_axes): |
| 59 | + output_shape = [] |
| 60 | + for group in grouped_axes: |
| 61 | + size = 1 |
| 62 | + for axis in group: |
| 63 | + size *= axes_map[axis] |
| 64 | + output_shape.append(size) |
| 65 | + |
| 66 | + return tuple(output_shape) |
| 67 | + |
| 68 | + |
| 69 | +def __compute_decomposed_shape(input_axes, axes_lengths, axes_map): |
| 70 | + reshaped_input_axes = [] |
| 71 | + reshaped_sizes = [] |
| 72 | + |
| 73 | + for axis in input_axes: |
| 74 | + if "(" in axis: # Decomposed axis |
| 75 | + inner_axes = re.findall(r"\w+", axis) |
| 76 | + sizes = [axes_lengths[a] for a in inner_axes] |
| 77 | + reshaped_input_axes.extend(inner_axes) |
| 78 | + reshaped_sizes.extend(sizes) |
| 79 | + else: |
| 80 | + reshaped_input_axes.append(axis) |
| 81 | + reshaped_sizes.append(axes_map[axis]) |
| 82 | + |
| 83 | + return reshaped_sizes |
| 84 | + |
| 85 | + |
| 86 | +@keras_export("keras.ops.rearrange") |
| 87 | +def rearrange(tensor, pattern, **axes_lengths): |
| 88 | + """ |
| 89 | + Rearranges the axes of a Keras tensor according to a specified pattern. |
| 90 | +
|
| 91 | + Args: |
| 92 | + tensor (Tensor): Input Keras tensor. |
| 93 | + pattern (str): String describing the rearrangement in einops notation. |
| 94 | + **axes_lengths: Keyword arguments specifying lengths of axes |
| 95 | + when axes decomposition is used. |
| 96 | +
|
| 97 | + Returns: |
| 98 | + Tensor: A Keras tensor with rearranged axes. |
| 99 | +
|
| 100 | + Follows the logic: |
| 101 | + 1. If decomposition is needed: |
| 102 | + - Reshape to match dimension decomposition. |
| 103 | + 2. Permute axes to match the form of the output. |
| 104 | + 3. Reshape to match the desired output shape. |
| 105 | + """ |
| 106 | + |
| 107 | + # Split the input and output patterns |
| 108 | + input_pattern, output_pattern = re.split(r"\s*->\s*", pattern) |
| 109 | + input_axes = re.findall(r"\w+|\(.*?\)", input_pattern) |
| 110 | + output_axes = re.findall(r"\w+|\(.*?\)", output_pattern) |
| 111 | + input_shape = shape(tensor) |
| 112 | + |
| 113 | + # Create axes map, and flattened output group |
| 114 | + axes_map = __create_axes_map(input_axes, input_shape, axes_lengths) |
| 115 | + grouped_output_axes = __create_grouped_axes(output_axes) |
| 116 | + flattened_output_axes = __flatten_group(grouped_output_axes) |
| 117 | + |
| 118 | + # 1. Axes decomposition |
| 119 | + decomposed_shapes = __compute_decomposed_shape( |
| 120 | + input_axes, axes_lengths, axes_map |
| 121 | + ) |
| 122 | + if decomposed_shapes != tensor.shape: |
| 123 | + tensor = reshape(tensor, decomposed_shapes) |
| 124 | + |
| 125 | + # 2. Transpose to match target shape |
| 126 | + permute_order = __get_transpose_order(input_axes, flattened_output_axes) |
| 127 | + tensor = transpose(tensor, permute_order) |
| 128 | + |
| 129 | + # 3. Reshape to final target shape |
| 130 | + output_shape = __compute_output_shape(axes_map, grouped_output_axes) |
| 131 | + tensor = reshape(tensor, output_shape) |
| 132 | + |
| 133 | + return tensor |
0 commit comments