forked from trekhleb/learn-python
-
Notifications
You must be signed in to change notification settings - Fork 0
/
test_math.py
58 lines (40 loc) · 1.55 KB
/
test_math.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
"""Math.
@see: https://docs.python.org/3/tutorial/stdlib.html#mathematics
Math module is useful as many math functions are already implemented and optimized.
"""
import math
import random
import statistics
def test_math():
"""Math.
The math module gives access to the underlying C library functions for floating point math.
"""
assert math.cos(math.pi / 4) == 0.70710678118654757
assert math.log(1024, 2) == 10.0
def test_random():
"""Random.
The random module provides tools for making random selections.
"""
# Choose from the list randomly.
random_options = ['apple', 'pear', 'banana']
random_choice = random.choice(random_options) # i.e. 'apple'
assert random_choice in random_options
# Sampling without replacement.
random_sample = random.sample(range(100), 10) # i.e. [30, 83, 16, 4, 8, 81, 41, 50, 18, 33]
for sample in random_sample:
assert 0 <= sample <= 100
# Choose random number.
random_float = random.random() # i.e. 0.17970987693706186
assert 0 <= random_float <= 1
# Random integer chosen from range(6)
random_integer = random.randrange(6) # i.e. 4
assert 0 <= random_integer <= 6
def test_statistics():
"""Statistics.
The statistics module calculates basic statistical properties (the mean, median,
variance, etc.) of numeric data.
"""
data = [2.75, 1.75, 1.25, 0.25, 0.5, 1.25, 3.5]
assert statistics.mean(data) == 1.6071428571428572
assert statistics.median(data) == 1.25
assert statistics.variance(data) == 1.3720238095238095