forked from abhinaukumar/funque
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrun_multi_testing.py
executable file
·254 lines (211 loc) · 9.72 KB
/
run_multi_testing.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
#!/usr/bin/env python3
import matplotlib
matplotlib.use('Agg')
import os
import sys
import re
import numpy as np
import pandas as pd
from funque.config import DisplayConfig
from funque.core.result_store import FileSystemResultStore
from funque.tools.misc import import_python_file, get_cmd_option, cmd_option_exists
from funque.core.quality_runner import FunqueQualityRunner
from funque.config import FunqueConfig
from funque.routine import run_test_on_dataset, print_matplotlib_warning
from funque.tools.stats import ListStats
__copyright__ = "Copyright 2016-2020, Netflix, Inc."
__license__ = "BSD+Patent"
POOL_METHODS = ['mean', 'harmonic_mean', 'min', 'median', 'perc5', 'perc10', 'perc20']
SUBJECTIVE_MODELS = ['DMOS', 'DMOS_MLE', 'MLE', 'MLE_CO_AP',
'MLE_CO_AP2 (default)', 'MOS', 'SR_DMOS',
'SR_MOS (i.e. ITU-R BT.500)',
'BR_SR_MOS (i.e. ITU-T P.913)',
'ZS_SR_DMOS', 'ZS_SR_MOS', '...']
def print_usage():
print("usage: " + os.path.basename(sys.argv[0]) + \
" test_dataset_list_filepath model_path " \
"[--phone-model] [--subj-model subjective_model] [--cache-result] " \
"[--parallelize] [--print-result] [--save-plot plot_dir] [--plot-wh plot_wh] "
"[--processes processes] [--csv-suffix csv_suffix]\n")
print("subjective_model:\n\t" + "\n\t".join(SUBJECTIVE_MODELS) + "\n")
print("plot_wh: plot width and height in inches, example: 5x5 (default)")
print("processes: must be an integer >=1")
def main():
if len(sys.argv) < 3:
print_usage()
return 2
csv_suffix = get_cmd_option(sys.argv, 3, len(sys.argv), '--csv-suffix')
try:
test_dataset_list_filepath = sys.argv[1]
except ValueError:
print_usage()
return 2
try:
model_path = sys.argv[2]
except ValueError:
print_usage()
return 2
cache_result = cmd_option_exists(sys.argv, 3, len(sys.argv), '--cache-result')
parallelize = cmd_option_exists(sys.argv, 3, len(sys.argv), '--parallelize')
processes = get_cmd_option(sys.argv, 3, len(sys.argv), '--processes')
print_result = cmd_option_exists(sys.argv, 3, len(sys.argv), '--print-result')
suppress_plot = cmd_option_exists(sys.argv, 3, len(sys.argv), '--suppress-plot')
phone_model = cmd_option_exists(sys.argv, 3, len(sys.argv), '--phone-model')
pool_method = get_cmd_option(sys.argv, 3, len(sys.argv), '--pool')
if not (pool_method is None
or pool_method in POOL_METHODS):
print('--pool can only have option among {}'.format(', '.join(POOL_METHODS)))
return 2
subj_model = get_cmd_option(sys.argv, 3, len(sys.argv), '--subj-model')
try:
from sureal.subjective_model import SubjectiveModel
if subj_model is not None:
subj_model_class = SubjectiveModel.find_subclass(subj_model)
else:
subj_model_class = SubjectiveModel.find_subclass('MLE_CO_AP2')
except Exception as e:
print("Error: " + str(e))
return 1
save_plot_dir = get_cmd_option(sys.argv, 3, len(sys.argv), '--save-plot')
plot_wh = get_cmd_option(sys.argv, 3, len(sys.argv), '--plot-wh')
if plot_wh is not None:
try:
mo = re.match(r"([0-9]+)x([0-9]+)", plot_wh)
assert mo is not None
w = mo.group(1)
h = mo.group(2)
w = int(w)
h = int(h)
plot_wh = (w, h)
except Exception as e:
print("Error: plot_wh must be in the format of WxH, example: 5x5")
return 1
runner_class = FunqueQualityRunner
if processes is not None:
try:
processes = int(processes)
except ValueError:
print("Input error: processes must be an integer")
assert processes >= 1
try:
test_dataset_list_store = import_python_file(test_dataset_list_filepath)
except Exception as e:
print("Error: " + str(e))
return 1
assert hasattr(test_dataset_list_store, 'datasets'), 'Test dataset list file must contain \'datasets\'.'
assert type(test_dataset_list_store.datasets) in [list, tuple], '\'datasets\' attribute must be either a list or tuple,'
test_dataset_files = test_dataset_list_store.datasets
if cache_result:
result_store = FileSystemResultStore(FunqueConfig.file_result_store_path())
else:
result_store = None
# pooling
if pool_method == 'harmonic_mean':
aggregate_method = ListStats.harmonic_mean
elif pool_method == 'min':
aggregate_method = np.min
elif pool_method == 'median':
aggregate_method = np.median
elif pool_method == 'perc5':
aggregate_method = ListStats.perc5
elif pool_method == 'perc10':
aggregate_method = ListStats.perc10
elif pool_method == 'perc20':
aggregate_method = ListStats.perc20
else: # None or 'mean'
aggregate_method = np.mean
if phone_model:
enable_transform_score = True
else:
enable_transform_score = None
srocc_dict = {}
pcc_dict = {}
rmse_dict = {}
for test_dataset_file in test_dataset_files:
try:
test_dataset = import_python_file(test_dataset_file)
except Exception as e:
print("Error: " + str(e))
return 1
try:
if suppress_plot:
raise AssertionError
from . import plt
if plot_wh is None:
plot_wh = (5, 5)
_, ax = plt.subplots(figsize=plot_wh, nrows=1, ncols=1)
_, results = run_test_on_dataset(test_dataset, runner_class, ax,
result_store, model_path,
parallelize=parallelize,
aggregate_method=aggregate_method,
subj_model_class=subj_model_class,
enable_transform_score=enable_transform_score,
processes=processes,
return_stats=True
)
bbox = {'facecolor':'white', 'alpha':0.5, 'pad':20}
ax.annotate('Testing Set', xy=(0.1, 0.85), xycoords='axes fraction', bbox=bbox)
# ax.set_xlim([-10, 110])
# ax.set_ylim([-10, 110])
plt.tight_layout()
if save_plot_dir is None:
DisplayConfig.show()
else:
DisplayConfig.show(write_to_dir=save_plot_dir)
except ImportError:
print_matplotlib_warning()
_, results = run_test_on_dataset(test_dataset, runner_class, None,
result_store, model_path,
parallelize=parallelize,
aggregate_method=aggregate_method,
subj_model_class=subj_model_class,
enable_transform_score=enable_transform_score,
processes=processes,
return_stats=True
)
except AssertionError:
_, results = run_test_on_dataset(test_dataset, runner_class, None,
result_store, model_path,
parallelize=parallelize,
aggregate_method=aggregate_method,
subj_model_class=subj_model_class,
enable_transform_score=enable_transform_score,
processes=processes,
return_stats=True
)
srocc_dict[test_dataset.dataset_name] = results['SRCC']
pcc_dict[test_dataset.dataset_name] = results['PCC']
rmse_dict[test_dataset.dataset_name] = results['RMSE']
# Collect results into data frames
df_pcc = pd.DataFrame()
df_pcc = df_pcc.append(pcc_dict, ignore_index=True)
df_srocc = pd.DataFrame()
df_srocc = df_srocc.append(srocc_dict, ignore_index=True)
df_rmse = pd.DataFrame()
df_rmse = df_rmse.append(rmse_dict, ignore_index=True)
def fisher_agg(x):
z = np.mean(np.log(1 + x) - np.log(1 - x))
t = np.exp(z)
return (t - 1) / (t + 1)
# Aggregate results across databases
df_pcc['Average'] = df_pcc.apply(fisher_agg, axis=1)
df_srocc['Average'] = df_srocc.apply(fisher_agg, axis=1)
df_rmse['Average'] = df_rmse.apply(lambda row: np.mean(row), axis=1) # Beware: scores may not be scaled correctly
# TODO: Find a better location to save results
df_srocc.to_csv('srocc' + ('_' + csv_suffix if csv_suffix else '') + '.csv')
df_pcc.to_csv('pcc' + ('_' + csv_suffix if csv_suffix else '') + '.csv')
df_rmse.to_csv('rmse' + ('_' + csv_suffix if csv_suffix else '') + '.csv')
if print_result:
print('PCC')
print(df_pcc)
print('SROCC')
print(df_srocc)
print('RMSE')
print(df_rmse)
else:
print('Avg. SROCC: {}, Avg. PCC: {}, Avg. RMSE: {}'.format(df_srocc['Average'].iloc[0], df_pcc['Average'].iloc[0], df_rmse['Average'].iloc[0]))
print('Warning: run_multi_testing.py does not normalize subjective scores before computing performance stats. So, the average RMSE may be more senstive to some database(s) than others.')
return
if __name__ == '__main__':
ret = main()
exit(ret)