-
Notifications
You must be signed in to change notification settings - Fork 0
/
orthoallcen.py
351 lines (291 loc) · 14.9 KB
/
orthoallcen.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
import numpy as np
import matplotlib.pyplot as plt
import time
import os
import copy
from matplotlib.backends.backend_pdf import PdfPages
from math import sqrt
# Throughout, NN means nearest neighbor, nNN means next to NN
# init() set up the original coefficients. The initial NN of dopant NN are assumed to be zero. And we start with a small central coeff
def set_para(OS, NN, resdir):
para = {
'OS' : OS,
'orb_count' : 10,
'NN_count' : NN,
'scale' : 20,
'testcase' : 300,
'limit' : 1.5,
'gradual' : 0.05,
'core' : '4221',
'numtype' : 2,
'sym_op' : 0,
'lower' : 80,
'upper' : 150
}
if para['sym_op'] == 1:
para['dir'] = 'res/highpre2sublat' + '_sym_' + str(para['sym_op']) + '_core_' + para['core'] + '_gradual_' + str(para['gradual']) + '_NN_1_iter_' + str(para['testcase']) + '/'
else:
para['dir'] = 'res/highpre2sublat' + '_sym_' + str(para['sym_op']) + '_core_' + para['core'] + '_gradual_' + str(para['gradual']) + '_NN_' + str(para['NN_count']) + '_iter_' + str(para['testcase']) + '/'
if OS == 'Mac':
location = '/Users/rayliu/Desktop/Code/ortho/'
if resdir:
os.system('mkdir' + para['dir'])
else:
location = 'C:/Users/Ray/Desktop/Code/code1/'
if resdir:
os.system('powershell.exe mkdir '+ para['dir'])
ovlp = []
if para['NN_count'] == 4:
ovlp.append(location + para['core'] + '/alloverlap1.dat')
ovlp.append(location + para['core'] + '/alloverlap2.dat')
elif para['NN_count'] == 1:
ovlp.append(location + para['core'] + '/simpleoverlap1.dat')
ovlp.append(location + para['core'] + '/simpleoverlap2.dat')
para['files'] = ovlp
return para
def init_coeff(para):
# old = np.zeros((para['orb_count'],NN_para['orb_count']))
old = np.random.rand(para['numtype'], para['orb_count'], para['orb_count'] + para['NN_count'] * para['orb_count']) / para['scale']
new = np.random.rand(para['numtype'], para['orb_count'], para['orb_count'] + para['NN_count'] * para['orb_count']) / para['scale']
norm = np.ones((para['numtype'], para['orb_count']))
for cen in range(10):
old[0][cen][cen] = 1
old[1][cen][cen] = 1
seed = copy.deepcopy(old)
return seed, old, new, norm
def init_res_array(para):
coeffarray = np.zeros((para['numtype'], para['testcase'], para['orb_count'], para['orb_count'] + para['NN_count'] * para['orb_count']))
ovlparray = np.zeros((para['numtype'], para['testcase'], para['orb_count'], para['orb_count'] + para['NN_count'] * para['orb_count']))
return coeffarray, ovlparray
def init_sym(para):
sym = np.zeros((para['numtype'], para['orb_count'], para['orb_count'] + para['NN_count'] * para['orb_count']))
symarray = pmarray()
symovlparray = np.zeros((para['numtype'], para['testcase'], para['orb_count'], para['orb_count'] + para['NN_count'] * para['orb_count']))
return sym, symarray, symovlparray
def init_data(para):
wf = np.load(para['dir'] + 'wf.npy')
ovlp = np.load(para['dir'] + 'ovlp.npy')
sym = np.load(para['dir'] + 'symovlp.npy')
return wf, ovlp, sym
def normalize(cen, coeff, ovlp, types, para):
normalization = 0
normflag = 1
typeL = types
typeR = types
for siteL in range(1 + para['NN_count']):
for orbL in range(para['orb_count']):
for siteR in range(1 + para['NN_count']):
for orbR in range(para['orb_count']):
normalization += innerprod(cen, siteL, siteR, orbL, orbR, ovlp, coeff, normflag, typeL, typeR, para)
return sqrt(abs(normalization))
# This loads the bare ovlp integral of Sthe 5 NN to all 25 NN and 2nd NN of interest
# Organized as follows: ovlp[0][:][:] is dopant site, and 1-4 are NN. Similarly, ovlp[:][0-4] are ovlp with dopant and NN, and [5-8] are NN of 1st NN, so on.
def readovlp(para):
# print(np.shape(raw))
ovlp = np.zeros((2, 1 + para['NN_count'], 1 + para['NN_count'] + para['NN_count'] * para['NN_count'], para['orb_count'], para['orb_count']))
for ifile in range(para['numtype']):
raw = np.loadtxt(para['files'][ifile])
raw = raw[:, 6:]
for site in range(1 + para['NN_count']):
for allsite in range(1 + para['NN_count'] + para['NN_count'] * para['NN_count']):
for lorb in range(para['orb_count']):
for rorb in range(para['orb_count']):
ovlp[ifile][site][allsite][lorb][rorb] = raw[(1 + para['NN_count'] + para['NN_count'] * para['NN_count']) * site + allsite][ para['orb_count'] * lorb + rorb]
return ovlp
# setmatrix() sets up the calculation of the all the necessary iNNer products and send them to main iteration loop
def setmatrix(cen, ovlp, coeff, types, para):
M = np.zeros((para['orb_count'] + para['NN_count'] * para['orb_count'], para['orb_count'] + para['NN_count'] * para['orb_count']))
normflag = 0
# update the [0][0] entry
typeL = types
typeR = types
for orbR in range(para['orb_count']):
for newsite in range(1 + para['NN_count']):
for neworb in range(para['orb_count']):
M[orbR][newsite* para['orb_count'] + neworb] = innerprod(cen, newsite, 0, neworb, orbR, ovlp, coeff, normflag, typeL, typeR, para)
for siteR in range(1, 1 + para['NN_count']):
typeL = types
typeR = int(not types)
for orbR in range(para['orb_count']):
for newsite in range(1 + para['NN_count']):
for neworb in range(para['orb_count']):
M[siteR * para['orb_count'] + orbR][newsite* para['orb_count'] + neworb] = innerprod(cen, newsite, siteR, neworb, orbR, ovlp, coeff, normflag, typeL, typeR, para)
return M
def cal_ovlp(cen, coeff, ovlp, types, para):
res = np.zeros(para['orb_count'] + para['NN_count'] * para['orb_count'])
normflag = 1
# update the [0][0] entry
for orbR in range(para['orb_count']):
typeL = types
typeR = types
res[orbR] = 0
for newsite in range(1 + para['NN_count']):
for neworb in range(para['orb_count']):
res[orbR] += innerprod(cen, newsite, 0, neworb, orbR, ovlp, coeff, normflag, typeL, typeR, para)
for siteR in range(1, 1 + para['NN_count']):
typeL = types
typeR = int(not types)
for orbR in range(para['orb_count']):
res[siteR*para['orb_count'] + orbR] = 0
for newsite in range(1 + para['NN_count']):
for neworb in range(para['orb_count']):
res[siteR*para['orb_count'] + orbR] += innerprod(cen, newsite, siteR, neworb, orbR, ovlp, coeff, normflag, typeL, typeR, para)
return res
# innerprod calculates the inner product between a singular orbital on the left and the wavefunction on the right.
# The indices siteL runs from 0-4, siteR runs from 0-4 (cen, NN1, NN2, NN3, NN4)
def innerprod(cen, siteL, siteR, orbL, orbR, ovlp, coeff, normflag, typeL, typeR, para):
res = 0
if normflag == 1:
coeffL = coeff
coeffR = coeff
else:
coeffL = np.ones((para['numtype'], para['orb_count'], para['orb_count'] + para['NN_count'] * para['orb_count']))
coeffR = coeff
for allcen in range(para['orb_count'] + para['NN_count'] * para['orb_count']):
res += coeffL[typeL][cen][siteL * para['orb_count'] + orbL] * coeffR[typeR][orbR][allcen] * ovlp[typeL][siteL][findovlp(siteR, allcen, para)][orbL][findorb(siteR,allcen, para)]
return res
# utility function that finds the correct overlap index
def findovlp(siteR, allcen, para):
if siteR == 0:
index = allcen//para['orb_count']
elif allcen<para['orb_count']:
index = siteR
else:
index = 1 + para['NN_count'] + (siteR -1) * para['NN_count'] + allcen//para['orb_count'] -1
return index
# utility that finds the correct orbital index
def findorb(siteR, allcen, para):
return allcen%para['orb_count']
# gen_rhs() provides the orthogonality condition, i.e. sets up the (0-ovlp) of the RHS of the matrix equation
def gen_rhs(cen, para): # here cen indicates the orbital on the central site, which should range from 0 to 9
rhs = np.zeros(para['orb_count'] + para['NN_count'] * para['orb_count'])
rhs[cen] = 1
return rhs
# test function to see if there's repeating pattern in the
def solve(cen, ovlp, old, types, para):
LHS = setmatrix(cen, ovlp, old, types, para)
RHS = gen_rhs(cen, para)
new = np.zeros((para['numtype'], para['orb_count'], para['orb_count'] + para['NN_count'] * para['orb_count'] ))
new[types][cen] = (1 - para['gradual']) * old[types][cen] + para['gradual'] * np.linalg.solve(LHS, RHS)
norm = normalize(cen, new, ovlp, types, para)
new = new / norm
return new[types][cen], norm
# symmetry takes the coefficients of the 1-NN calculations and propogates it to 4-NN according to symmetry.
def symmetry(old, types, symarray, para, sympara):
res = np.zeros((sympara['orb_count'], sympara['orb_count'] + sympara['NN_count'] * sympara['orb_count']))
for cen in range(sympara['orb_count']):
res[cen][:para['orb_count'] + para['NN_count'] * para['orb_count']] = old[types][cen][:]
for restNN in range(sympara['NN_count'] - para['NN_count']):
for orb in range(para['orb_count']):
res[cen][para['orb_count'] * (2 + restNN) + orb] = old[types][cen][orb] * symarray[types][restNN * para['orb_count'] + orb]
return res
# generates the plus minus array that the symmetry operation uses
def pmarray():
array1, array2 = [], []
array1 += [1, 1, -1, -1, -1, 1, -1, 1, 1, 1]
array1 += [1, -1, 1, -1, -1, -1, 1, 1, 1, 1]
array1 += [1, -1, -1, 1, 1, -1, -1, 1, 1, 1]
array2 += [1, 1, -1, -1, -1, 1, -1, -1, -1, 1]
array2 += [1, -1, 1, -1, -1, -1, 1, 1, -1, 1]
array2 += [1, -1, -1, 1, 1, -1, -1, 1, -1, 1]
return [array1, array2]
def resplot(coeffarray, para):
ref = range(para['testcase'])
figname = para['dir'] + 'allorbital_' + '.pdf'
with PdfPages(figname) as pdf:
for cen in range(para['orb_count']):
plt.figure(figsize=(3, 3))
fig, ax = plt.subplots(2,1, sharex='all', sharey='all')
fig.suptitle('Central Orbital {}' .format(cen+1))
cen1 = coeffarray[0, :, cen, cen]
cen2 = coeffarray[1, :, cen, cen]
all1 = coeffarray[0, :, cen, :]
all2 = coeffarray[1, :, cen, :]
ax[0].plot(ref, cen1, label='cen', linewidth=10)
ax[1].plot(ref, cen2, label='cen', linewidth=10)
ax[0].plot(ref, all1)
ax[1].plot(ref, all2)
ax[1].set_xlabel('No. of iterations')
ax[1].set_ylabel('Orbital Coefficients')
plt.ylim(-para['limit'], para['limit'])
# plt.ylim(-0.5,0.0)
pdf.savefig()
plt.close()
def ovlpplot(ovlparray, para):
ref = range(para['upper'] - para['lower'])
figname = para['dir'] + 'allorbital_' + '_NN_' + str(para['NN_count']) +'_overlap' + '_zoom_' + str(para['lower']) + str(para['upper']) + '.pdf'
with PdfPages(figname) as pdf:
for cen in range(para['orb_count']):
plt.figure(figsize=(3, 3))
fig, ax = plt.subplots(2,1, sharex='all', sharey='all')
fig.suptitle("Central Orbital Overlap {}" .format(cen+1))
ax[0].plot(ref, ovlparray[0, para['lower']:para['upper'], cen, :])
ax[1].plot(ref, ovlparray[1, para['lower']:para['upper'], cen, :])
ax[1].set_xlabel('No. of iterations')
ax[1].set_ylabel('Wavefunction Overlap')
plt.ylim(-0.25, 0.25)
# plt.ylim(-0.5,0.0)
pdf.savefig()
plt.close()
def saveresult(newarray, ovlparray, symovlparray, norm, seed, para):
wfname = para['dir'] + 'wf'
ovlpname = para['dir'] + 'ovlp'
symname = para['dir'] + 'symovlp'
seedname = para['dir'] + 'seed'
normname = para['dir'] + 'norm'
np.save( wfname, newarray)
np.save( ovlpname, ovlparray)
np.save( symname, symovlparray)
np.save( seedname, seed)
np.save( normname, norm)
def printresult(coeffarray, ovlparray, para):
for itr, ovlp in enumerate(np.sum(abs(ovlparray[0, para['lower']:para['upper'], 0, 1:]), axis=1)/49):
print(itr, ovlp)
#np.savetxt(para['dir'] + 'coeff1.dat', np.reshape(coeffarray[0, 90, :, :], 500)[None], delimiter=' ')
#np.savetxt(para['dir'] + 'coeff2.dat', np.reshape(coeffarray[1, 90, :, :], 500)[None], delimiter=' ')
np.savetxt(para['dir'] + 'coeff1.dat', coeffarray[0, 90, :, :], delimiter=' ')
np.savetxt(para['dir'] + 'coeff2.dat', coeffarray[0, 90, :, :], delimiter=' ')
# main() iteratively solve the matrix equation until the old and new coefficients converge.
def main(PostProcess, Repeat):
para= set_para('Win', 4, 1)
sympara = set_para('Win', 4, 0)
ovlp = readovlp(para)
symovlp = readovlp(sympara)
if not PostProcess:
# print(np.shape(ovlp), ovlp)
seed, old, new, norm = init_coeff(para)
if Repeat:
old = np.load(para['dir'] + 'seed.npy')
coeffarray, ovlparray = init_res_array(para)
if sympara['sym_op'] == 1:
sym, symarray, symovlparray = init_sym(sympara)
else:
symovlparray = np.zeros(1)
start_time = time.time()
for itest in range(para['testcase']):
for types in range(para['numtype']):
for cen in range(para['orb_count']):
new[types][cen], norm[types][cen] = solve(cen, ovlp, old, types, para)
print(norm[types][cen], itest)
old[types] = new[types]
if sympara['sym_op'] == 1:
sym[types] = symmetry(old, types, symarray, para, sympara)
for cen in range(para['orb_count']):
ovlparray[types][itest][cen] = cal_ovlp(cen, old, ovlp, types, para)
if sympara['sym_op'] == 1:
symovlparray[types][itest][cen] = cal_ovlp(cen, sym, symovlp, types, sympara)
coeffarray[types][itest] = new[types]
# print(new[5])
elapsed_time = time.time() - start_time
print(elapsed_time)
# set which central function to plot
saveresult(coeffarray, ovlparray, symovlparray, norm, seed, para)
else:
coeffarray, ovlparray, symovlparray = init_data(para)
#resplot(coeffarray, para)
#ovlpplot(ovlparray, para)
printresult(coeffarray, ovlparray, para)
if sympara['sym_op'] == 1:
ovlpplot(symovlparray, sympara)
# np.savetxt('testout', newarray, depara['limit']er='')
main(1, 0)