-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathcapture.py
32 lines (25 loc) · 1 KB
/
capture.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
#Import numpy and cv2 libraries
import numpy as np
import cv2 as cv
# Create Haar Cascade for recognition functionality.
face_cascade = cv.CascadeClassifier('haarcascade_frontalface_default.xml')
eye_cascade = cv.CascadeClassifier('haarcascade_eye.xml')
# Create variables. `image` contains the image to analyze and `convert` converts the image to grayscale
image = cv.imread('test.jpg')
convert = cv.cvtColor(image, cv.COLOR_BGR2GRAY)
# OpenCV function for facial recognition.
face = face_cascade.detectMultiScale(convert, 1.9, 5)
# Label faces.
for (x,y,w,h) in face:
cv.rectangle(image,(x,y),(x+w,y+h),(255,0,0),2)
grayscale = convert[y:y+h, x:x+w]
original = image[y:y+h, x:x+w]
# OpenCV function for eye recognition
eyes = eye_cascade.detectMultiScale(grayscale)
for (ex,ey,ew,eh) in eyes:
cv.rectangle(original,(ex,ey),(ex+ew,ey+eh),(0,255,0),2)
# Print and write image with labeling.
cv.imshow('image',image)
cv.imwrite('res.jpg',image)
cv.waitKey(0)
cv.destroyAllWindows()