-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathraggler.py
executable file
·65 lines (55 loc) · 2.03 KB
/
raggler.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
#!/usr/bin/env python3
import os
import fire
from raggler import RAG, create_index
from raggler.llm_context import RAG_TEMPLATE
from raggler.mlx_llm import MLXLLM
from raggler.indexes import NPIndex
from sentence_transformers import SentenceTransformer
from dotenv import load_dotenv
def main(
query: str,
k: int = 2,
ctx: bool = False,
mlx_llm_name: str = "mlx-community/AlphaMonarch-7B-mlx-4bit",
embedder: str = "all-MiniLM-L12-v2",
rfr: bool = False,
files: str = None,
thr: float = 0.0,
):
"""
Retrieve the most similar documents to the given query
and generate a response from the language model.
Args:
query: The query to retrieve and generate a response for.
k: The number of documents to retrieve.
ctx: Whether to print the context found.
mlx_llm_name: The name of the mlx language model to use.
embedder: The name of the sentence transformer model to use.
rfr: Whether to refresh the index. False by default.
files: The path to the directory containing the documents to index.
This takes precedence over the RAGGLER_DIR environment variable.
thr: The similarity threshold for the retrieved chunks.
Set it to > 0.0 to filter out chunks with similarity < thr.
Returns:
str: The response from the language model.
"""
load_dotenv()
embedder = SentenceTransformer(embedder)
files = files or os.getenv("RAGGLER_DIR")
default_path_for_index = os.path.join("data/indexes/")
if os.path.exists(default_path_for_index) and not rfr:
index = NPIndex()
index.load(default_path_for_index)
else:
# create an index
index = create_index(
paths_to_directories=[files],
embedder=embedder,
index=NPIndex(),
path_to_save_index=default_path_for_index,
)
rag = RAG(embedder, index, MLXLLM(mlx_llm_name, RAG_TEMPLATE))
return rag(query, k=k, show_context=ctx, thr=thr)
if __name__ == "__main__":
fire.Fire(main)