forked from vdobler/chart
-
Notifications
You must be signed in to change notification settings - Fork 0
/
hist.go
477 lines (423 loc) · 12.4 KB
/
hist.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
package chart
import (
"image/color"
"math"
)
type HistChartData struct {
Name string
Style Style
Samples []float64
}
// HistChart represents histogram charts.
//
// Histograms should not be mixed up with bar charts produced by BarChart:
// Histograms are computed (binified) automatically from the raw
// data.
type HistChart struct {
XRange, YRange Range // Lower limit of YRange is fixed to 0 and not available for input
Title string // Title of chart
Key Key // Key/Legend
Counts bool // Display counts instead of frequencies
Stacked bool // Display different data sets ontop of each other
Shifted bool // Shift non-stacked bars sideways (and make them smaler)
FirstBin float64 // center of the first (lowest bin)
BinWidth float64 // Width of bins (0: auto)
TBinWidth TimeDelta // BinWidth for time XRange
Gap float64 // gap between bins in (bin-width units): 0<=Gap<1,
Sep float64 // separation of bars in one bin (in bar width units) -1<Sep<1
Kernel Kernel // Smoothing kernel (usable only for non-stacked histograms)
Options PlotOptions // general stylistic optins
Data []HistChartData
}
type Kernel func(x float64) float64
const sqrt2piinv = 0.39894228 // 1.0 / math.Sqrt(2.0*math.Pi)
// Some common smoothing kernels. All are identical 0 outside [-1,1[.
var (
// 1/2
RectangularKernel = func(x float64) float64 {
if x >= -1 && x < 1 {
return 0.5
}
return 0
}
// 1 - |x|
TriangularKernel = func(x float64) float64 {
if x >= -1 && x < 1 {
return 1 - math.Abs(x)
}
return 0
}
// 15/16 * (1-x^2)^2
BisquareKernel Kernel = func(x float64) float64 {
if x >= -1 && x < 1 {
a := (1 - x*x)
return 15.0 / 16.0 * a * a
}
return 0
}
// 35/32 * (1-x^2)^3
TriweightKernel Kernel = func(x float64) float64 {
if x >= -1 && x < 1 {
a := (1 - x*x)
return 35.0 / 32.0 * a * a * a
}
return 0
}
// 3/4 * (1-x^2)
EpanechnikovKernel Kernel = func(x float64) float64 {
if x >= -1 && x < 1 {
return 3.0 / 4.0 * (1.0 - x*x)
}
return 0
}
// 1/sqrt(2pi) * exp(-1/2x^2)
GaussKernel Kernel = func(x float64) float64 {
return sqrt2piinv * math.Exp(-0.5*x*x)
}
)
// AddData will add data to the plot. Legend will be updated by name.
func (c *HistChart) AddData(name string, data []float64, style Style) {
// Style
if style.empty() {
style = AutoStyle(len(c.Data), true)
}
// Init axis, add data, autoscale
if len(c.Data) == 0 {
c.XRange.init()
}
c.Data = append(c.Data, HistChartData{name, style, data})
for _, d := range data {
c.XRange.autoscale(d)
}
// Key/Legend
if name != "" {
c.Key.Entries = append(c.Key.Entries, KeyEntry{Text: name, Style: style, PlotStyle: PlotStyleBox})
}
}
// AddDataInt is a convenience method to add integer data (a simple wrapper
// around AddData).
func (c *HistChart) AddDataInt(name string, data []int, style Style) {
fdata := make([]float64, len(data))
for i, d := range data {
fdata[i] = float64(d)
}
c.AddData(name, fdata, style)
}
// AddDataGeneric is the generic version which allows the addition of any type
// implementing the Value interface.
func (c *HistChart) AddDataGeneric(name string, data []Value, style Style) {
fdata := make([]float64, len(data))
for i, d := range data {
fdata[i] = d.XVal()
}
c.AddData(name, fdata, style)
}
// G = B * Gf; S = W *Sf
// W = (B(1-Gf))/(N-(N-1)Sf)
// S = (B(1-Gf))/(N/Sf - (N-1))
// N Gf Sf
// 2 1/4 1/3
// 3 1/5 1/2
// 4 1/6 2/3
// 5 1/6 3/4
func (c *HistChart) widthFactor() (gf, sf float64) {
if c.Stacked || !c.Shifted {
gf = c.Gap
sf = -1
return
}
switch len(c.Data) {
case 1:
gf = c.Gap
sf = -1
return
case 2:
gf = 1.0 / 4.0
sf = -1.0 / 3.0
case 3:
gf = 1.0 / 5.0
sf = -1.0 / 2.0
case 4:
gf = 1.0 / 6.0
sf = -2.0 / 3.0
default:
gf = 1.0 / 6.0
sf = -2.0 / 4.0
}
if c.Gap != 0 {
gf = c.Gap
}
if c.Sep != 0 {
sf = c.Sep
}
return
}
// Prepare binCnt bins of width binWidth starting from binStart and count
// data samples per bin for each data set. If c.Counts is true than the
// absolute counts are returned instead if the frequencies. max is the
// largest y-value which will occur in our plot.
func (c *HistChart) binify(binStart, binWidth float64, binCnt int) (freqs [][]float64, max float64) {
x2bin := func(x float64) int { return int((x - binStart) / binWidth) }
freqs = make([][]float64, len(c.Data)) // freqs[d][b] is frequency/count of bin b in dataset d
max = 0
for i, data := range c.Data {
freq := make([]float64, binCnt)
drops := 0
for _, x := range data.Samples {
bin := x2bin(x)
if bin < 0 || bin >= binCnt {
// fmt.Printf("!!!!! Lost %.3f (bin=%d)\n", x, bin)
drops++
continue
}
freq[bin] = freq[bin] + 1
//fmt.Printf("Value %.2f sorted into bin %d, count now %d\n", x, bin, int(freq[bin]))
}
// scale if requested and determine max
n := float64(len(data.Samples) - drops)
// DebugLogger.Printf("Dataset %d has %d samples (by %d drops).\n", i, int(n), drops)
ff := 0.0
for bin := 0; bin < binCnt; bin++ {
if !c.Counts {
freq[bin] = 100 * freq[bin] / n
}
ff += freq[bin]
if freq[bin] > max {
max = freq[bin]
}
}
freqs[i] = freq
}
// DebugLogger.Printf("Maximum : %.2f\n", max)
if c.Stacked { // recalculate max
max = 0
for bin := 0; bin < binCnt; bin++ {
sum := 0.0
for i := range freqs {
sum += freqs[i][bin]
}
// fmt.Printf("sum of bin %d = %d\n", bin, sum)
if sum > max {
max = sum
}
}
// DebugLogger.Printf("Re-Maxed (stacked) to: %.2f\n", max)
}
return
}
func (c *HistChart) findBinWidth() {
bw := c.XRange.TicSetting.Delta
if bw == 0 { // this should not happen...
bw = 1
}
// Average sample count (n) and "optimum" bin count obc
n := 0
for _, data := range c.Data {
for _, x := range data.Samples {
// Count only data in valid x-range.
if x >= c.XRange.Min && x <= c.XRange.Max {
n++
}
}
}
n /= len(c.Data)
obc := math.Sqrt(float64(n))
// DebugLogger.Printf("Average size of %d data sets: %d (obc=%d)\n", len(c.Data), n, int(obc+0.5))
// Increase/decrease bin width if tic delta yields massively bad choice
binCnt := int((c.XRange.Max-c.XRange.Min)/bw + 0.5)
if binCnt >= int(2*obc) {
bw *= 2 // TODO: not so nice if bw is of form 2*10^n (use 2.5 in this case to match tics)
//DebugLogger.Printf("Increased bin width to %.3f (optimum bin cnt = %d, was %d).\n", bw, int(obc+0.5), binCnt)
} else if binCnt < int(3*obc) {
bw /= 2
// DebugLogger.Printf("Reduced bin width to %.3f (optimum bin cnt = %d, was %d).\n", bw, int(obc+0.5), binCnt)
} else {
// DebugLogger.Printf("Bin width of %.3f is ok (optimum bin cnt = %d, was %d).\n", bw, int(obc+0.5), binCnt)
}
c.BinWidth = bw
}
// Reset chart to state before plotting.
func (c *HistChart) Reset() {
c.XRange.Reset()
c.YRange.Reset()
}
// Plot will output the chart to the graphic device g.
func (c *HistChart) Plot(g Graphics) {
layout := layout(g, c.Title, c.XRange.Label, c.YRange.Label,
c.XRange.TicSetting.Hide, c.YRange.TicSetting.Hide, &c.Key)
fw, fh, _ := g.FontMetrics(elementStyle(c.Options, MajorAxisElement).Font)
fw += 0
width, height := layout.Width, layout.Height
topm, leftm := layout.Top, layout.Left
numxtics, numytics := layout.NumXtics, layout.NumYtics
// Outside bound ranges for histograms are nicer
leftm, width = leftm+int(2*fw), width-int(2*fw)
topm, height = topm, height-int(1*fh)
c.XRange.Setup(numxtics, numxtics+4, width, leftm, false)
// TODO(vodo) a) BinWidth might be input, alignment to tics should be nice, binCnt, ...
if c.BinWidth == 0 {
c.findBinWidth()
}
xmin, _ := c.XRange.Min, c.XRange.Max
binStart := c.BinWidth * math.Ceil(xmin/c.BinWidth)
c.FirstBin = binStart + c.BinWidth/2
binCnt := int(math.Floor(c.XRange.Max-binStart) / c.BinWidth)
// DebugLogger.Printf("Using %d bins from %.3f to %.3f width %.3f (xrange: %.3f--%.3f)\n", binCnt, binStart, binStart+c.BinWidth*float64(binCnt), c.BinWidth, xmin, xmax)
counts, max := c.binify(binStart, c.BinWidth, binCnt)
// Calculate smoothed density plots and re-max y.
var smoothed [][]EPoint
if !c.Stacked && c.Kernel != nil {
smoothed = make([][]EPoint, len(c.Data))
for d := range c.Data {
p, m := c.smoothed(d, binCnt)
smoothed[d] = p
if m > max {
max = m
}
}
}
// Fix lower end of y axis
c.YRange.DataMin = 0
c.YRange.MinMode.Fixed = true
c.YRange.MinMode.Value = 0
c.YRange.autoscale(float64(max))
c.YRange.Setup(numytics, numytics+2, height, topm, true)
g.Begin()
if c.Title != "" {
drawTitle(g, c.Title, elementStyle(c.Options, TitleElement))
}
g.XAxis(c.XRange, topm+height+fh, topm, c.Options)
g.YAxis(c.YRange, leftm-int(2*fw), leftm+width, c.Options)
xf := c.XRange.Data2Screen
yf := c.YRange.Data2Screen
numSets := len(c.Data)
n := float64(numSets)
gf, sf := c.widthFactor()
ww := c.BinWidth * (1 - gf) // w'
var w, s float64
if !c.Stacked && c.Shifted {
w = ww / (n + (n-1)*sf)
s = w * sf
} else {
w = ww
s = -ww
}
// DebugLogger.Printf("gf=%.3f, sf=%.3f, bw=%.3f ===> ww=%.2f, w=%.2f, s=%.2f\n", gf, sf, c.BinWidth, ww, w, s)
if c.Shifted || c.Stacked {
for d := numSets - 1; d >= 0; d-- {
bars := make([]Barinfo, 0, binCnt)
ws := 0
for b := 0; b < binCnt; b++ {
if counts[d][b] == 0 {
continue
}
xb := binStart + (float64(b)+0.5)*c.BinWidth
x := xb - ww/2 + float64(d)*(s+w)
xs := xf(x)
xss := xf(x + w)
ws = xss - xs
thebar := Barinfo{x: xs, w: xss - xs}
off := 0.0
if c.Stacked {
for dd := d - 1; dd >= 0; dd-- {
off += counts[dd][b]
}
}
a, aa := yf(float64(off+counts[d][b])), yf(float64(off))
thebar.y, thebar.h = a, iabs(a-aa)
bars = append(bars, thebar)
}
g.Bars(bars, c.Data[d].Style)
if !c.Stacked && sf < 0 && gf != 0 && fh > 1 {
// Whitelining
lw := 1
if ws > 25 {
lw = 2
}
white := Style{LineColor: color.NRGBA{0xff, 0xff, 0xff, 0xff}, LineWidth: lw, LineStyle: SolidLine}
for _, b := range bars {
g.Line(b.x, b.y-1, b.x+b.w+1, b.y-1, white)
g.Line(b.x+b.w+1, b.y-1, b.x+b.w+1, b.y+b.h, white)
}
}
}
} else {
bars := make([]Barinfo, 1)
order := make([]int, numSets)
for b := 0; b < binCnt; b++ {
// shame on me...
for d := 0; d < numSets; d++ {
order[d] = d
}
for d := 0; d < numSets; d++ {
for p := 0; p < numSets-1; p++ {
if counts[order[p]][b] < counts[order[p+1]][b] {
order[p], order[p+1] = order[p+1], order[p]
}
}
}
for d := 0; d < numSets; d++ {
if counts[order[d]][b] == 0 {
continue
}
xb := binStart + (float64(b)+0.5)*c.BinWidth
x := xb - ww/2 + float64(d)*(s+w)
xs := xf(x)
xss := xf(x + w)
thebar := Barinfo{x: xs, w: xss - xs}
a, aa := yf(float64(counts[order[d]][b])), yf(0)
thebar.y, thebar.h = a, iabs(a-aa)
bars[0] = thebar
g.Bars(bars, c.Data[order[d]].Style)
}
}
}
if !c.Stacked && c.Kernel != nil {
for d := numSets - 1; d >= 0; d-- {
style := Style{Symbol:/*c.Data[d].Style.Symbol*/ 'X', LineColor: c.Data[d].Style.LineColor,
LineWidth: 1, LineStyle: SolidLine}
for j := range smoothed[d] {
// now YRange is set up: transform to screen coordinates
smoothed[d][j].Y = float64(c.YRange.Data2Screen(smoothed[d][j].Y))
}
g.Scatter(smoothed[d], PlotStyleLines, style)
}
}
if !c.Key.Hide {
g.Key(layout.KeyX, layout.KeyY, c.Key, c.Options)
}
g.End()
}
// Smooth data set i. The Y-value of the returned points is not jet in screen coordinates
// but in data coordinates! (Reason: YRange not set up jet)
func (c *HistChart) smoothed(i, binCnt int) (points []EPoint, max float64) {
nan := math.NaN()
samples := imax(25, binCnt*5)
step := (c.XRange.Max - c.XRange.Min) / float64(samples)
points = make([]EPoint, 0, 50)
h := c.BinWidth
K := c.Kernel
n := float64(len(c.Data[i].Samples))
for x := c.XRange.Min; x <= c.XRange.Max; x += step {
f := 0.0
for _, xi := range c.Data[i].Samples {
f += K((x - xi) / h)
}
f /= h
if !c.Counts {
f /= n
f *= 100 // as display is in %
}
// Rescale kernel density estimation by width of bars:
f *= c.BinWidth
if f > max {
max = f
}
xx := float64(c.XRange.Data2Screen(x))
// yy := float64(c.YRange.Data2Screen(f))
// fmt.Printf("Consructed %.3f, %.4f\n", x, f)
points = append(points, EPoint{X: xx, Y: f, DeltaX: nan, DeltaY: nan})
}
// fmt.Printf("Dataset %d: ff=%.4f\n", i, ff)
return
}