-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtransformable.py
executable file
·246 lines (199 loc) · 8.75 KB
/
transformable.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
#!/usr/bin/env python
import argparse
import os
import os.path
import toml
parser = argparse.ArgumentParser(description='text to text transformer toolkit')
parser.add_argument(
'-c', '--config', metavar='PATH', type=str, default='./transformable.toml',
help='toml file to load task parameters from (default: "./transformable.toml")')
parser.add_argument(
'-t', '--tasks', action='append', default=[],
help='tasks from configuration file to execute')
parser.add_argument(
'-n', '--name', type=str,
help='base file name to use for generated images')
parser.add_argument(
'-m', '--model', type=str, default='distilbert-base-uncased-distilled-squad',
help='transformer model to use for inference (default: "distilbert-base-uncased-distilled-squad")')
parser.add_argument(
'-p', '--num_outputs', type=int, default=1,
help='number of images to generate per prompt (default: 1)')
parser.add_argument(
'-i', '--num_inference_steps', type=int, default=50,
help='number of denoising steps, higher increases quality (default: 50)')
parser.add_argument(
'-s', '--seed', type=int, default=0,
help='seed to use for generator (default: random)')
parser.add_argument(
'-r', '--models_dir', type=str, default='~/src/huggingface.co/',
help='root directory containing huggingface models (default: "~/src/huggingface.co")')
parser.add_argument(
'-d', '--download_models', action='store_true', default=False,
help='allow automatic downloading of models (default: False)')
parser.add_argument(
'-o', '--output_dir', type=str, default='./output/',
help='directory to write image output (default: "./output/")')
parser.add_argument(
'-a', '--all_tasks', action='store_true',
help='run all tasks from the configuration file')
parser.add_argument(
'-l', '--list_tasks', action='store_true',
help='list all tasks from the configuration file')
parser.add_argument(
'--dump', action='store_true',
help='dump configuration and exit')
parser.add_argument(
'-k', '--kind', type=str, default='text-generation',
choices=['text-generation', 'question-answering', 'conversational'],
help='kind of transformer model (default="text-generation")')
parser.add_argument(
'-j', '--repeat', type=int, default=1,
help='repeat the specified task this number of times')
parser.add_argument(
'-x', '--context', type=str, default='',
help='context to use for answering the question')
parser.add_argument(
'prompts', metavar='PROMPT', nargs='*',
help='prompt to generate images from')
FLAGS = parser.parse_args()
# voodoo magic to find explicitly defined flags
FLAGS_SENTINEL = list()
FLAGS_SENTINEL_NS = argparse.Namespace(**{ key: FLAGS_SENTINEL for key in vars(FLAGS) })
parser.parse_args(namespace=FLAGS_SENTINEL_NS)
EXPLICIT_FLAGS = vars(FLAGS_SENTINEL_NS).items()
CONFIG_SKIP_FLAGS = ('config', 'tasks', 'dump', 'all_tasks', 'repeat', 'list_tasks', 'prompts')
CONFIG = {'DEFAULT': {}}
CONFIG_TASKS = []
if FLAGS.config:
if os.path.exists(FLAGS.config):
print('[*] loading configuration from', FLAGS.config)
CONFIG = toml.load(FLAGS.config)
for task in CONFIG:
if task == 'DEFAULT':
continue
CONFIG_TASKS.append(task)
def normalize_config(config, random_seed=False):
if not config.get('seed') or random_seed:
config['seed'] = int.from_bytes(os.urandom(2), 'big')
def task_config(task):
config = {}
config.update(CONFIG['DEFAULT'])
if task not in CONFIG:
print('[!] task not found in configuration file:', task)
return config
config.update(CONFIG[task])
config['name'] = task
# calculate which flags were set explicitly and override config options
for key, value in EXPLICIT_FLAGS:
if key in CONFIG_SKIP_FLAGS:
continue
if value is not FLAGS_SENTINEL:
config[key] = value
elif key not in config:
config[key] = getattr(FLAGS, key)
return config
def task_config_from_flags(prompt):
config = {}
config.update(CONFIG['DEFAULT'])
for key, value in vars(FLAGS).items():
if key in CONFIG_SKIP_FLAGS:
continue
config[key] = value
config['prompts'] = [prompt]
return config
def choose_image_path(root, basename):
image_name = None
i = 0
while True:
output_file = '%s.%d.png' % (basename, i)
output_path = os.path.expanduser(os.path.join(root, output_file))
if not os.path.exists(output_path):
return output_path
i += 1
def invoke_task(config):
if not config.get('prompts'):
print('[!] prompt must be defined in config or on command line, not running pipeline')
return
#if not config.get('name'):
# print('[!] --name must be specified in config or on command line, not running pipeline')
# return
if config['kind'] == 'question-answering' and not config.get('context'):
print('[!] must provide --context with question-answering transformers')
return
if not config.get('tokenizer'):
config['tokenizer'] = config['model']
local_files_only = False
if not config.get('download_models'):
model_path = os.path.expanduser(os.path.join(config['models_dir'], config['model']))
tokenizer_path = os.path.expanduser(os.path.join(config['models_dir'], config['tokenizer']))
local_files_only = True
else:
print('[*] will attempt to download models from huggingface')
model_path = config['model']
tokenizer_path = config['tokenizer']
if 'download_models' in config:
del config['download_models']
if FLAGS.dump:
print(config)
return
print('[*] using generator seed:', config['seed'])
print('[*] preparing transformer pipeline from', model_path)
import transformers
transformers.set_seed(config['seed'])
tokenizer = transformers.AutoTokenizer.from_pretrained(tokenizer_path)
if config['kind'] == 'text-generation':
model = transformers.AutoModelForCausalLM.from_pretrained(model_path, local_files_only=local_files_only)
elif config['kind'] == 'question-answering':
model = transformers.AutoModelForQuestionAnswering.from_pretrained(model_path, local_files_only=local_files_only)
elif config['kind'] == 'conversational':
model = transformers.AutoModelForSeq2SeqLM.from_pretrained(model_path, local_files_only=local_files_only)
pipe = transformers.pipeline(config['kind'], model=model, tokenizer=tokenizer)
print('[*] executing transformer pipeline with prompts:', config['prompts'])
if config['kind'] == 'text-generation':
#outputs = pipe(config['prompts'][0], max_length=30, num_return_sequences=config['num_outputs'])
outputs = pipe(config['prompts'][0], max_length=None, max_new_tokens=30, num_return_sequences=config['num_outputs'])
print('[*] generated text from transformer:', outputs[0]['generated_text'])
elif config['kind'] == 'question-answering':
outputs = pipe(question=config['prompts'][0], context=config['context'], max_length=30)
print('[*] answer from transformer:', outputs['answer'])
elif config['kind'] == 'conversational':
outputs = pipe(transformers.Conversation(config['prompts'][0]))
#print('[*] answer from transformer:', outputs['answer'])
#os.makedirs(FLAGS.output_dir, exist_ok=True)
print('[*] output from transformer:', outputs)
def run():
tasks = FLAGS.tasks
if FLAGS.all_tasks:
tasks = CONFIG_TASKS
if FLAGS.list_tasks:
print('[*] listing available tasks:')
print()
for task in CONFIG_TASKS:
print(task)
print()
return
if not FLAGS.prompts and not tasks:
print('[!] at least one prompt or one config/task must be provided')
return
if FLAGS.prompts and tasks:
print('[!] must provide EITHER prompt arguments OR config/tasks')
return
if len(tasks) > 1 and FLAGS.name:
print('[!] flag --name cannot be used with multiple tasks from config')
return
for j in range(FLAGS.repeat):
for task in tasks:
print('[*] loaded task from configuration file:', task)
repeat = CONFIG[task].get('repeat', 1)
for i in range(repeat):
config = task_config(task)
normalize_config(config, i > 0 or j > 0)
invoke_task(config)
for prompt in FLAGS.prompts:
print('[*] loaded task from command line flags')
config = task_config_from_flags(prompt)
normalize_config(config, j > 0)
invoke_task(config)
if __name__ == '__main__':
run()