-
Notifications
You must be signed in to change notification settings - Fork 0
/
khalid_cv.tex
282 lines (257 loc) · 12 KB
/
khalid_cv.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
\documentclass[10pt,fleqn]{scrartcl}
%\documentclass[10pt]{article}
\usepackage[fleqn]{amsmath}
%\usepackage[latin1]{inputenc}
\usepackage[utf8]{inputenc}
\usepackage{amsmath}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage[left=0.5in, right=0.5in, top=0.5in, bottom=0.75in]{geometry}
\usepackage{hyperref}
\usepackage{graphicx}
\usepackage{gensymb}
%\usepackage[compact]{titlesec}
\usepackage{mathpazo}
\usepackage{enumitem}
\usepackage{textcomp}
\usepackage{xcolor}
\urlstyle{same}
\hypersetup{
urlcolor=blue,}
\setcounter{tocdepth}{4}
\newcommand{\school}[3]{
\item \textsc{#1} \hfill {#2}\\
#3\\
}
\begin{document}
\noindent
\textcolor{blue}{\LARGE{\textbf{Khalid Hossain}}} \\
\textcolor{blue}{\large{Leadership Computing Facility, Argonne National
Laboratory}}
%\begin{flushright}
% 1650 NE Valley Road, Apt\# J2,\\
% Pullman, Washington, 99163 \\
% \textbf{\href{mailto:[email protected]}{[email protected]}} \\
% \textbf{\href{mailto:[email protected]}{[email protected]}} \\
% (509) 339-5978
%\end{flushright}
\noindent
\section*{\textcolor{blue}{Skills}}
\begin{itemize}
\item \textbf{5+} years of experience of developing
\textbf{quantum simulation software}
using denisty functional theory (\textbf{DFT}) with
\textbf{Python}.
\item High performance computing \textbf{(HPC)} techniques to
perform one of the largest simulations of the dynamics in fermionic
systems using
\textcolor{blue}{\textbf{\href{https://gitlab.fizyka.pw.edu.pl/wtools/wslda}{wslda-toolkit}}}.
\item Understanding of \textbf{superfluidity} (advanced) and
\textbf{superconductivity} (intermediate) at both
\textbf{phenomenological} and \textbf{microscopic} theory level.
\item \textbf{Machine learning (ML)} techniques in calculating fission
properties for nuclei using \textbf{PyTorch}.
\item Comfortable using \textbf{energy optimization} techniques to
determine initial states in superfluid systems.
\end{itemize}
\noindent
\section*{\textcolor{blue}{Research Experiences}}
\noindent
\textbf{Postdoctoral Appointee} \hfill{January 2023 - Current}\\
Supervisor: Corey Adams \\
Mentor: Kyle Felker \\
Leadership Computing Facility, Argonne National Laboratory
\begin{itemize}
\item \textit{Deep Learning in Many-body Physics}\\
We calculate different ground state properties like
density of nucleons in small to medium sized nuclei employing
artificial neural network (ANN) based representation of the many-body
wavefunction, and variational Monte-Carlo technique. The state-of-the-
art calculations compute properties of nuclei up to total $6$ nucleons.
Our goal is to extend these simulations using distributed computing and
leadership class facilities for larger systems (up to $20$), providing
us with insights into the fundamental nuclear interactions.
\item \textit{Performance Analysis of Supercomputing Applications} \\
We develop performance metrics and analyze them for scientific
applications at different levels of distributed computing (single vs.
multiple GPUs, nodes; medium to large scale distribution etc.)
across many available hardware platforms like Intel, NVIDIA, AMD etc.
This will allow us to develop better programming strategies to operate
leadership class supercomputers near the peak performance level.
\end{itemize}
\noindent
\textbf{Summer Intern} \hfill June 2021 - August 2021\\
Supervisors: Marc Verriere, Irene Kim, and Nicolas Schunck\\
Nuclear Data and Theory Group, Lawrence-Livermore National Laboratory
\begin{itemize}
\item \textit{Machine learning in nuclear theory}\\
We use machine learning techniques to determine nuclei's ground state
and fission properties across the nuclear chart. The project involves
training a convolutional denoising
autoencoder to determine the Hartree-Fock-Bogoliubov solution from the
first iterations of HFBTHO, a FORTRAN nuclear Density Functional Theory
code actively developed in the Nuclear Data Group of LLNL. A properly
trained network is expected to drastically reduce the number of iterations
to obtain
self-consistent solutions of the HFB equations. The neural network is
conceived and trained using the Python library PyTorch.
\end{itemize}
\noindent
\textbf{Research Assistant} \hfill May 2016 - May 2022 \\
Supervisor: Michael McNeil Forbes, Ph.D. \\
Department of Physics and Astronomy, WSU, Pullman, WA
\begin{itemize}
\item \textit{'Negative-mass' hydrodynamics}\\
DFT implementation to simulate the dynamics of trapped $^{87}$Rb
Bose-Einstein condensate. This research led to the identification of
the mechanism behind the origin of effective mass and explained
observed phenomena in this bosonic superfluid system. In collaboration
with the 'Fundamental Quantum Physics' lab of Professor Peter Engels
at Washington State University.
\item \textit{Andreev-Bashkin effect (entrainment, dissipationless
superfluid drag)}\\
We develop an experimental protocol to directly detect bulk 3D
entrainment in the superfluid mixture of $^{174}$Yb (boson) and
$^{6}$Li (fermion). Entrainment has been predicted by A. F. Andreev
and E. P. Bashkin in 1975 and has not been experimentally observed ever
since. The experimental detection is expected to shed light on the
long-standing astrophysical mystery of neutron star 'glitch' --
a sudden increase in the rotation rate of the star. Entrainment is
believed to play a crucial in the development of this effect.
This research is a close collaboration with Professor Subhadeep
Gupta's lab at University of Washington.
\item \textit{Rotating Quantum Turbulence}\\
Quantum turbulence is characterized by the dynamic interactions between
quantized vortices in superfluids. We are developing orbital-free DFT
models to study these interactions in a rotating system and validate
the results against more accurate TDDFT models like superfluid local
density approximation (SLDA). This validation is crucial to build
orbital-free density functionals to simulate the dynamics in
macroscopically large samples of fermionic superfluids as time
evolution of many orbitals for long times can be quite expensive
numerically. This research is a collaboration with Professor
Gabriel Wlazłowski's group at Warsaw University of Technology, Poland.
\item \textit{Isotropic Quantum Turbulence}\\
In similar spirit to the rotating turbulence project, but it is
performed for an
isotropic superfluid in a 3D box. Involves handling of much larger
data sets and HPC. Computing assignments and analysis is performed
in Summit and Rhea -- flagship supercomputing facilities maintained by
Oak Ridge National Lab.
\end{itemize}
\noindent
\section*{\textcolor{blue}{Education}}
\begin{itemize}
\school{Washington State University}{Aug 2014 - May 2022}
{Department of Physics and Astronomy, Pullman, WA}
\textbf{Ph.D. in Atomic Physics} \\
\textbf{Advisor: Michael McNeil Forbes, Ph.D.}
\school{University of Dhaka}{Jan 2012 - July 2013}
{Dhaka, Bangladesh}
\textbf{Master of Science in Theoretical Physics}
\end{itemize}
%\newpage
\noindent
\section*{\textcolor{blue}{Publications}}
\begin{itemize}
\item ``Negative-Mass Hydrodynamics in a Spin-Orbit-Coupled Bose-Einstein
Condensate''\\
M. A. Khamehchi, \textbf{K.H.}, M. E. Mossman, Y. Zhang, Th. Busch,
M. M. Forbes, and P. Engels.\\
\href{https://journals.aps.org/prl/abstract/10.1103
/PhysRevLett.118.155301}
{\textcolor{blue}{Phys. Rev. Lett. \textbf{118}, 155301 (2017)}}
\item ``Rotating Quantum Turbulence in the Unitary Fermi Gas''\\
\textbf{K.H.}, K. Kobuszewski, M. M. Forbes, P. Magierski, K. Sekizawa,
and G. Wlazłowski.\\
\href{https://journals.aps.org/pra/abstract/10.1103/PhysRevA.105.013304}
{\textcolor{blue}{Phys. Rev. A \textbf{105}, 013304 (2021)}}
\item ``Detecting Entrainment in Fermi-Bose Mixture''\\
\textbf{K.H.}, S. Gupta, and M. M. Forbes.\\
\href{https://journals.aps.org/pra/abstract/10.1103/
PhysRevA.105.063315}{\textcolor{blue}
{Phys. Rev. A \textbf{105}, 063315 (2022)}}
\end{itemize}
\noindent
\section*{\textcolor{blue}{Talks}}
\begin{itemize}
\item ``Homogeneous and Isotropic Turbulence across the BEC-BCS Crossover " \\
APS DAMOP Virtual Meeting \hfill June, 2021
\item ``Quantum Turbulence: Generation and Decay in Bosonic and Fermionic Superfluids" \\
APS DAMOP Virtual Meeting \hfill June, 2020
\item ``Energy Dissipation and Vortex Recombination in the Unitary Fermi Gas''\\
APS DAMOP meeting \hfill May, 2019
\item ``Detecting Entrainment in Fermi-Bose Mixtures''\\
APS DAMOP meeting \hfill May, 2018
\item ``Negative-mass Hydrodynamics in a spin-orbit coupled Bose-Einstein
Condensate'' \\
APS DAMOP meeting \hfill June 2017
\end{itemize}
\noindent
\section*{\textcolor{blue}{Awards and Honors}}
\begin{itemize}
\item Radziemski Fellowship \hfill June 2018 \\
College of Arts and Sciences, Washington State University
% \item Travel Grant, American Physical Society (APS) \hfill June 2017\\
% 48$^{th}$Annual conference \\
% Division of Atomic, Molecular and Optical Physics (DAMOP).
\end{itemize}
\noindent
\section*{\textcolor{blue}{Teaching and Mentoring Experience}}
\textbf{Lecturer} \\
\textit{ Washington State University} \hfill{Fall 2022}
\begin{itemize}
\item Taught ``Physics 150: Physics and Your World".
\end{itemize}
\textbf{Graduate Student Instructor} \hfill{Spring 2018, 2022}
\begin{itemize}
\item Instructor for ``Physics 150".
\end{itemize}
\textbf{Physics Teaching Assistant (TA)} \hfill Aug 2014 - Dec 2017
\begin{itemize}
\item Lab instructor for introduction to physics (Physics 102, 201, 202).
\end{itemize}
\noindent
\section*{\textcolor{blue}{Training and Development}}
\begin{itemize}
\item Attended workshop on ``\href{http://www.int.washington.edu/PROGRAMS/19-1a/}
{\textcolor{blue}{Quantum Turbulence: Cold Atoms, Heavy Ions, and Neutron Stars}}'' \hfill March 2019\\
Institute of Nuclear Theory \\
University of Washington, Seattle
\end{itemize}
%\noindent
%\section*{\textcolor{blue}{Media Coverage}}
%\begin{itemize}
% \item \textbf{BBC} \quad
% \href{https://www.bbc.com/news/science-environment-39642992}
% {\textcolor{blue}{Physicists observe 'negative mass'}}
% \item \textbf{The Guardian} \quad
% \href{https://www.theguardian.com/science/2017/apr/19/scientists-have-
% created-a-fluid-with-negative-mass-but-what-does-it-tell-us}
% {\textcolor{blue}{Scientists have created a fluid with negative mass --
% but what does it tell us}}
% \item \textbf{APS News}\quad
% \href{https://www.aps.org/publications/apsnews/201707/disperse.cfm}
% {\textcolor{blue}{To Disperse, or To Not Disperse: Debating
% ``Negative Mass''}}
%\end{itemize}
%\noindent
%\section*{\textcolor{blue}{References}}
% \begin{tabular}{lll}
% \hspace{5pt} Professor Michael Forbes, Ph.D. &
% \hspace{5pt} Professor Gabriel Wlaz\l{}owski, Ph.D. &
% \hspace{5pt} Professor Peter Engels, Ph.D. \\
% \hspace{5pt} Dept. of Physics and Astronomy &
% \hspace{5pt} Faculty of Physics &
% \hspace{5pt} Dept. of Physics and Astronomy \\
% \hspace{5pt} Washington State University &
% \hspace{5pt} Warsaw University Technology &
% \hspace{5pt} Washington State University \\
% \hspace{5pt} \small{\href{mailto:[email protected]}
% {\textcolor{blue}{[email protected]}}} &
% \hspace{5pt}\small{\href{mailto:[email protected]}
% {\textcolor{blue}{[email protected]}}} &
% \hspace{5pt}\small{\href{mailto:[email protected]}
% {\textcolor{blue}{[email protected]}}} \\
% \end{tabular}
\end{document}