forked from DrSkippy/Data-Science-45min-Intros
-
Notifications
You must be signed in to change notification settings - Fork 0
/
kernel-examples.py
executable file
·85 lines (68 loc) · 2.01 KB
/
kernel-examples.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
#!/usr/bin/env python
# -*- coding: UTF-8 -*-
__author__="Josh Montague"
__license__="MIT License"
import sys
import json
import matplotlib.pyplot as plt
try:
import seaborn as sns
except ImportError as e:
sys.stderr.write("seaborn not installed. Using default matplotlib templates.")
import numpy as np
from sklearn.svm import SVC
# adapted from:
# http://scikit-learn.org/stable/auto_examples/svm/plot_svm_kernels.html
# Our dataset and targets
X = np.c_[(.4, -.7),
(-1.5, -1),
(-1.4, -.9),
(-1.3, -1.2),
(-1.1, -.2),
(-1.2, -.4),
(-.5, 1.2),
(-1.5, 2.1),
(1, 1),
# --
(1.3, .8),
(1.2, .5),
(.2, -2),
(.5, -2.4),
(.2, -2.3),
(0, -2.7),
(1.3, 2.1)].T
Y = [0] * 8 + [1] * 8
# figure number
fignum = 1
# fit the model
for kernel in ('linear', 'poly', 'rbf', 'sigmoid'):
#clf = SVC(kernel=kernel)
clf = SVC(kernel=kernel, gamma=2)
clf.fit(X, Y)
# plot the line, the points, and the nearest vectors to the plane
plt.figure(fignum, figsize=(8, 6))
plt.clf()
plt.scatter(clf.support_vectors_[:, 0], clf.support_vectors_[:, 1],
facecolors='none', zorder=10, s=300)
plt.scatter(X[:, 0], X[:, 1], c=Y, zorder=10, cmap=plt.cm.Paired, s=100)
plt.axis('tight')
x_min = -3
x_max = 3
y_min = -3
y_max = 3
XX, YY = np.mgrid[x_min:x_max:200j, y_min:y_max:200j]
Z = clf.decision_function(np.c_[XX.ravel(), YY.ravel()])
# Put the result into a color plot
Z = Z.reshape(XX.shape)
plt.figure(fignum, figsize=(4, 3))
#plt.pcolormesh(XX, YY, Z > 0, cmap=plt.cm.Paired)
plt.pcolormesh(XX, YY, Z > 0, alpha=0.1)
plt.contour(XX, YY, Z, colors=['k', 'k', 'k'], linestyles=['--', '-', '--'],
levels=[-.5, 0, .5])
plt.xlim(x_min, x_max)
plt.ylim(y_min, y_max)
plt.title('{}'.format(kernel))
#plt.xticks(())
#plt.yticks(())
fignum = fignum + 1
plt.show()