-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathreptile_meta_train.py
460 lines (383 loc) · 19.7 KB
/
reptile_meta_train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
from read_conf import read_set_tuple, read_set_list_single
import torch
import torch.nn as nn
import numpy as np
import random
import configparser
import pickle
import math
from copy import deepcopy
from sklearn.metrics.classification import confusion_matrix
import sys
import argparse
from torch.autograd import Variable
from torch.nn import functional as F
import time
from CRNN import CRNN
from utils import get_info_args, get_crnn_paras, get_WA, get_UA, get_device_idx, point_to_grad, average_grad, model_zero_grad
parser = argparse.ArgumentParser()
parser.add_argument('--main-path', type=str, help='indicate prefix of the cross-validation path ',
default='/data0/gkb_dataset/meta_multi_task/')
parser.add_argument('--dataset', type=str, help='indicate the name of dataset ',
default='/data0/gkb_dataset/meta_multi_task/')
parser.add_argument('--ckt-path', type=str, help='indicate the name of dataset ',
default='/data0/gkb_dataset/meta_multi_task/')
parser.add_argument('--conf', type=str, help='the config file of the network', default='20hz_nn.conf')
parser.add_argument('--cnn2rnn', type=str, help='indicate the way to put cnn output to rnn ', default='concat')
parser.add_argument('--rnn2dnn', type=str, help='indicate the way to put rnn output to dnn ', default='Avg')
parser.add_argument('--penlty', type=str, help='indicate if penlty different class ', default='T')
parser.add_argument('--task-num', type=int, help='indicate the number of task on meta-training', default=8)
parser.add_argument('--freq', type=int, help='indicate the maximum value in frequency domain ', default=200)
parser.add_argument('--out-dim', type=int, help='indicate the number of output label', default=4)
parser.add_argument('--smooth', type=str, help='indicate if smooth used', default='F')
parser.add_argument('--smooth-value', type=float, help='indicate smooth value', default=0.1)
parser.add_argument('--inner-loop', type=int, help='indicate the number of inner loop in meta-train', default=4)
parser.add_argument('--train-batch', type=int, help='indicate the value of outer batch size in meta-train', default=64)
parser.add_argument('--train-loop', type=int, help='indicate the value of outer iteration in '
'meta-train', default=300)
parser.add_argument('--train-eval', type=int, help='indicate the epoch num to turn to meta-test in meta-train',
default=20)
parser.add_argument('--gpu', type=int, help='indicate the gpu to use in demo ', default=3)
parser.add_argument('--start-cross', type=int, help='indicate which cross validation to start ',
default=1)
parser.add_argument('--end-cross', type=int, help='indicate which cross validation to end ', default=6)
parser.add_argument('--sub-task', type=int, help='indicate the number of sub task of each task', default=3)
parser.add_argument('--inner-lr', type=float, help='indicate the inner learning rate', default=0.1)
parser.add_argument('--outer-lr', type=float, help='indicate the outer learning rate', default=0.001)
parser.add_argument('--fine-tune', type=float, help='indicate the learning rate for fine-tuning', default=0.0005)
paras = parser.parse_args()
main_path = paras.main_path
dataset = paras.dataset
conf = main_path + '/config/' + paras.conf
crossprefix = dataset + '/'
task_num = paras.task_num
max_freq = paras.freq
out_dim = paras.out_dim
cnn2rnn = paras.cnn2rnn
rnn2dnn = paras.rnn2dnn
if cnn2rnn not in ['concat', 'sum', 'avg', 'max']:
raise NotImplementedError
if rnn2dnn not in ['Avg', 'Sum', 'Max', 'L-concat', 'FB-concat']:
raise NotImplementedError
smoothing, confidence, name_smooth, env_name, ckp_path, penlty_bool = get_info_args(paras.penlty, paras.smooth, paras.smooth_value, paras.ckt_path, max_freq, cnn2rnn, rnn2dnn)
gpu = paras.gpu
gpus = [gpu]
torch.cuda.set_device(gpu)
dev_test_gpus = "cuda:" + str(gpu)
GRAD_CLIP = 2
max_esplon = 1e-6
cross_idx_list = list(range(paras.start_cross, paras.end_cross))
lab_m_list = ['neu', 'ang', 'hap', 'sad']
task_lab = ['meta_test_v.pkl', 'meta_test_a.pkl', 'meta_test_d.pkl']
task_pen = ['meta_test_v_portion.pkl', 'meta_test_a_portion.pkl', 'meta_test_d_portion.pkl']
def get_pen_dict(penlty_dict, lab_tensor, batch_num):
if paras.smooth == 'T':
if penlty_bool == True:
penlty = [list(map(penlty_dict.get, range(4))) for _ in range(batch_num)]
else:
penlty = [list([1.0 for _ in range(4)]) for _ in range(batch_num)]
else:
if penlty_bool == True:
penlty = list(map(penlty_dict.get, lab_tensor))
else:
penlty = list([1.0 for _ in range(batch_num)])
return penlty
def get_task_batch(task_n_dict):
'''
get the batch size of each task, and each task shares the train_step
:param task_n_dict: {task_1: N_1, task_2: N_2, ... task_n: N_n}
:return:
'''
task_n_list = [task_n_dict.get(i) for i in range(paras.task_num)]
task_p_list = np.array(task_n_list) / max(task_n_list)
task_batch_dict = list(np.floor(paras.train_batch * task_p_list))
train_steps = math.floor(max(task_n_list) / paras.train_batch)
return train_steps, task_batch_dict
def comput_loss(criterion, model, fea_tensor, lab_tensor, penlty, mode='query'):
if paras.smooth == 'T':
out = model(fea_tensor, mode)
device = out.get_device()
true_dist = torch.zeros(out.size()).cuda(device=device)
true_dist.scatter_(1, lab_tensor.data.unsqueeze(1), 1)
true_dist = confidence * true_dist + smoothing / paras.out_dim
true_dist.requires_grad = False
loss = (((-torch.log(out) * true_dist) * penlty).sum(dim=1)).mean()
# loss = (criterion(torch.log(out), true_dist) * penlty).mean()
else:
loss = (criterion(model(fea_tensor, mode), lab_tensor) * penlty).mean()
return loss
def train(model, cross_idx, cross_path, vis, learning_rate=0.001, ckp_pth=None, penlty_bool=True):
#////////////////////////////////////////////////////////////////////////////////// #
# #
# Indicate the loss function and initialize the optimizer #
# #
#////////////////////////////////////////////////////////////////////////////////// #
auxi_model = deepcopy(model)
win_name = 'train_' + cross_idx
title_name = 'train_' + cross_idx
print('============================Meta-train Training start============================')
print()
if paras.smooth == 'T':
criterion = nn.KLDivLoss(size_average=False, reduce=False)
else:
criterion = nn.CrossEntropyLoss(size_average=False, reduce=False)
# create the optimizers for Multi-train Stage, Knowledge Transfer Stage, Fine-tune
model_para_n = len(list(model.parameters()))
main_optimizer_share = torch.optim.Adam(list(model.parameters())[:-2], lr=learning_rate, betas=(0.9, 0.999),
eps=1e-08, weight_decay=0)
auxi_optimizer_share = torch.optim.Adam(list(auxi_model.parameters())[:-2], lr=learning_rate, betas=(0.9, 0.999),
eps=1e-08, weight_decay=0)
main_optimizer_trans = torch.optim.Adam(list(model.parameters())[-2:], lr=learning_rate, betas=(0.9, 0.999),
eps=1e-08, weight_decay=0)
auxi_optimizer_trans = torch.optim.Adam(list(auxi_model.parameters())[-2:], lr=learning_rate, betas=(0.9, 0.999),
eps=1e-08, weight_decay=0)
fine_tune_optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate, betas=(0.9, 0.999), eps=1e-08,
weight_decay=0)
# old_state = main_optimizer.state_dict()
old_state_share = main_optimizer_share.state_dict()
old_state_trans = main_optimizer_trans.state_dict()
device_idx = get_device_idx(model)
#////////////////////////////////////////////////////////////////////////////////// #
# #
# Load dataset and compute weight for each class #
# #
#////////////////////////////////////////////////////////////////////////////////// #
fea_list = []
lab_list = []
pen_list = [[] for _ in range(paras.task_num)]
task_n_dict = {k: 0 for k in range(paras.task_num)}
for k in range(paras.task_num):
file_name = cross_path + '/' + 'train_task' + str(k + 1) + '_mat.pkl'
with open(file_name, 'rb') as f:
data = pickle.load(f)
fea_list.append(deepcopy(data))
task_n_dict[k] = len(data)
del data
file_name = cross_path + '/' + 'train_task' + str(k + 1) + '_lab.pkl'
with open(file_name, 'rb') as f:
lab_list.append(pickle.load(f))
file_name = cross_path + '/' + 'train_task' + str(k + 1) + '_Eport.pkl'
with open(file_name, 'rb') as f:
data = pickle.load(f)
max_t = max(data.values())
data = {k: data[k] / max_t for k in data.keys()}
(pen_list[k]).append(data)
file_name = cross_path + '/' + 'train_task' + str(k + 1) + '_Vport.pkl'
with open(file_name, 'rb') as f:
data = pickle.load(f)
max_t = max(data.values())
data = {k: data[k] / max_t for k in data.keys()}
(pen_list[k]).append(data)
file_name = cross_path + '/' + 'train_task' + str(k + 1) + '_Aport.pkl'
with open(file_name, 'rb') as f:
data = pickle.load(f)
max_t = max(data.values())
data = {k: data[k] / max_t for k in data.keys()}
(pen_list[k]).append(data)
file_name = cross_path + '/' + 'train_task' + str(k + 1) + '_Dport.pkl'
with open(file_name, 'rb') as f:
data = pickle.load(f)
max_t = max(data.values())
data = {k: data[k] / max_t for k in data.keys()}
(pen_list[k]).append(data)
train_batch_epo, task_batch_dict = get_task_batch(task_n_dict)
task_idx_list = [list(range(task_n_dict.get(k))) for k in range(paras.task_num)]
task_idx_order = list(range(paras.task_num))
#////////////////////////////////////////////////////////////////////////////////// #
# #
# Start training #
# #
#////////////////////////////////////////////////////////////////////////////////// #
for epoch in range(paras.train_loop):
real_sup_loss = 0.0
real_que_loss = 0.0
fine_tune_loss = 0.0
model.train()
auxi_model.train()
random.shuffle(task_idx_order)
for k in range(paras.task_num):
random.shuffle(task_idx_list[k])
for j in range(train_batch_epo):
main_optimizer_trans.zero_grad()
main_optimizer_share.zero_grad()
fine_tune_optimizer.zero_grad()
old_var = model.state_dict()
fine_tune_grad = deepcopy(model)
for k in range(paras.task_num):
# select the correspongding task index and corresponding task batch
task_idx = task_idx_order[k]
batch = task_batch_dict[task_idx]
# get the start/end index of the training task
skip = int(j * batch)
if j == (train_batch_epo - 1):
skep = task_n_dict[task_idx]
else:
skep = (j + 1) * batch
skep = int(skep)
batch_num = skep - skip
# select k-th task information
pen_task = pen_list[task_idx]
fea = fea_list[task_idx][skip:skep]
lab = lab_list[task_idx][skip:skep]
lab = np.array(lab)
lab_E, lab_V, lab_A, lab_D = lab[:, 0], lab[:, 1], lab[:, 2], lab[:, 3]
lab_E = list(lab_E); lab_V = list(lab_V); lab_A = list(lab_A); lab_D = list(lab_D)
pen_E = get_pen_dict(pen_task[0], lab_E, batch_num)
pen_V = get_pen_dict(pen_task[1], lab_V, batch_num)
pen_A = get_pen_dict(pen_task[2], lab_A, batch_num)
pen_D = get_pen_dict(pen_task[3], lab_D, batch_num)
#////////////////////////////////////////////////////////////////////////////////// #
# #
# Multi-train Stage #
# #
#////////////////////////////////////////////////////////////////////////////////// #
train_set = zip((fea, fea, fea), (lab_V, lab_A, lab_D), (pen_V, pen_A, pen_D))
temp_model = deepcopy(model)
model_zero_grad(temp_model, cuda_bool=True, deviec_idx=device_idx)
for fea_mat, lab_mat, pen in train_set:
auxi_model.load_state_dict(deepcopy(old_var))
auxi_optimizer_share.zero_grad()
for idx, para_p in enumerate(auxi_model.parameters()):
if idx < (model_para_n - 2):
para_p.requires_grad = True
else:
para_p.requires_grad = False
auxi_optimizer_share.load_state_dict(deepcopy(old_state_share))
auxi_optimizer_share.zero_grad()
if not isinstance(fea_mat, list):
lab_mat = [lab_mat]
fea_mat = [fea_mat]
fea_tensor = torch.tensor(fea_mat).type(torch.FloatTensor).cuda(gpus[0])
lab_tensor = torch.tensor(lab_mat).cuda(gpus[0])
penlty = torch.tensor(pen).cuda(gpus[0])
loss = comput_loss(criterion=criterion, model=auxi_model, fea_tensor=fea_tensor,
lab_tensor=lab_tensor, penlty=penlty, mode='support')
loss.backward()
real_sup_loss += loss.item()
point_to_grad(model, auxi_model, cuda_bool=True, deviec_idx=device_idx, base=paras.sub_task)
point_to_grad(temp_model, auxi_model, cuda_bool=True, deviec_idx=device_idx, base=paras.sub_task)
auxi_optimizer_share.zero_grad()
auxi_optimizer_share.load_state_dict(deepcopy(old_state_share))
auxi_optimizer_share.zero_grad()
point_to_grad(auxi_model, temp_model, cuda_bool=True, deviec_idx=device_idx, base=1)
del temp_model
auxi_optimizer_share.step()
#////////////////////////////////////////////////////////////////////////////////// #
# #
# Knowledge Transfer Stage #
# #
#////////////////////////////////////////////////////////////////////////////////// #
auxi_optimizer_share.zero_grad()
auxi_optimizer_trans.zero_grad()
for idx, para_p in enumerate(auxi_model.parameters()):
if idx < (model_para_n-2):
para_p.requires_grad = False
else:
para_p.requires_grad = True
auxi_optimizer_trans.load_state_dict(old_state_trans)
auxi_optimizer_trans.zero_grad()
lab_mat = lab_E
penlty = pen_E
if not isinstance(fea, list):
lab_mat = [lab_mat]
fea = [fea]
fea_tensor = torch.tensor(fea).type(torch.FloatTensor).cuda(gpus[0])
lab_tensor = torch.tensor(lab_mat).cuda(gpus[0])
penlty = torch.tensor(penlty).cuda(gpus[0])
loss = comput_loss(criterion=criterion, model=auxi_model, fea_tensor=fea_tensor,
lab_tensor=lab_tensor, penlty=penlty, mode='query')
loss.backward()
real_que_loss += loss.item()
point_to_grad(model, auxi_model, cuda_bool=True, deviec_idx=device_idx, base=1)
auxi_optimizer_trans.step()
#////////////////////////////////////////////////////////////////////////////////// #
# #
# Fine-tuning #
# #
#////////////////////////////////////////////////////////////////////////////////// #
for para_p in auxi_model.parameters():
para_p.requires_grad = True
auxi_optimizer_trans.zero_grad()
auxi_optimizer_share.zero_grad()
loss = comput_loss(criterion=criterion, model=auxi_model, fea_tensor=fea_tensor,
lab_tensor=lab_tensor, penlty=penlty, mode='query')
loss.backward()
fine_tune_loss += loss.item()
point_to_grad(fine_tune_grad, auxi_model, cuda_bool=True, deviec_idx=device_idx, base=1)
auxi_optimizer_share.zero_grad()
auxi_optimizer_trans.zero_grad()
#////////////////////////////////////////////////////////////////////////////////// #
# #
# Backward #
# #
#////////////////////////////////////////////////////////////////////////////////// #
average_grad(model, task_num=paras.task_num)
main_optimizer_trans.step()
main_optimizer_share.step()
main_optimizer_trans.zero_grad()
main_optimizer_share.zero_grad()
old_state_share = main_optimizer_share.state_dict()
old_state_trans = main_optimizer_trans.state_dict()
average_grad(fine_tune_grad, task_num=paras.task_num)
fine_tune_optimizer.zero_grad()
point_to_grad(model, fine_tune_grad, cuda_bool=True, deviec_idx=device_idx, base=paras.task_num)
fine_tune_optimizer.step()
#////////////////////////////////////////////////////////////////////////////////// #
# #
# Plot figure and save checkpoint #
# #
#////////////////////////////////////////////////////////////////////////////////// #
real_sup_loss = real_sup_loss / train_batch_epo / paras.sub_task / paras.task_num
real_que_loss = real_que_loss / train_batch_epo / paras.task_num
fine_tune_loss = fine_tune_loss / train_batch_epo / paras.task_num
tmp = title_name + '_' + 'sup_loss'
vis.line(X=np.array([epoch + 1]), Y=np.array([real_sup_loss]), win=tmp, update='append',
opts={'title': tmp})
tmp = title_name + '_' + 'que_loss'
vis.line(X=np.array([epoch + 1]), Y=np.array([real_que_loss]), win=tmp, update='append',
opts={'title': tmp})
tmp = title_name + '_' + 'fine_tune'
vis.line(X=np.array([epoch + 1]), Y=np.array([fine_tune_loss]), win=tmp, update='append',
opts={'title': tmp})
if ((epoch + 1) % paras.train_eval) == 0:
tar_name = ckp_pth + '/' + 'Leave_' + cross_idx + '_Outer_' + str(epoch + 1) + \
'_para.tar'
torch.save({
'model_state_dict': model.state_dict(),
'main_optimizer_share': main_optimizer_share.state_dict(),
}, tar_name)
print('============================Meta-train Training Finish============================')
def main(env_name, ckt_path, cross_idx_list, crossprefix, net_conf, cnn2rnn, rnn2dnn, penlty_bool=True):
import visdom
import os
vis = visdom.Visdom(env=env_name)
if not os.path.exists(ckt_path):
os.mkdir(ckt_path)
cfg = configparser.ConfigParser()
cfg.read(net_conf)
cnn_setting, rnn_setting, pooling_setting, dnn_setting, drop_rate = get_crnn_paras(cfg, max_freq, cnn2rnn)
for j in cross_idx_list:
print("=================================================Run the leave %d speaker programming"
"=================================================" % j)
print(time.localtime(time.time()))
cross_idx = str(j)
cross_path = crossprefix + 'leave_' + cross_idx + '/'
seed = 2234
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
if torch.cuda.is_available():
torch.cuda.manual_seed_all(seed)
torch.backends.cudnn.deterministic = True
ser_model = CRNN(out_dim=4, cnn_setting=cnn_setting, rnn_setting=rnn_setting,
pooling_setting=pooling_setting, dnn_setting=dnn_setting, dropout_rate=drop_rate,
cnn2rnn=cnn2rnn, rnn2dnn=rnn2dnn)
ser_model.cuda(gpus[0])
train(model=ser_model, cross_idx=cross_idx, cross_path=cross_path, vis=vis, learning_rate=paras.outer_lr,
ckp_pth=ckt_path, penlty_bool=penlty_bool)
del ser_model
print("=================================================Finish the leave %d speaker programming"
"=================================================" % j)
print()
if __name__ == "__main__":
main(env_name=env_name, ckt_path=ckp_path, cross_idx_list=cross_idx_list, crossprefix=crossprefix, net_conf=conf, cnn2rnn=cnn2rnn, rnn2dnn=rnn2dnn, penlty_bool=penlty_bool)