-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathnyuv2_torch_ds_adapter.py
198 lines (161 loc) · 5.82 KB
/
nyuv2_torch_ds_adapter.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
from functools import partial
from pathlib import Path
import albumentations as A
import cv2
import numpy as np
import tensorflow as tf
import torch
import torchvision.transforms as transforms
from config import cfg
from torch.utils.data import Dataset, Subset, random_split
class BaseDataset(Dataset):
def __init__(self, crop_size, fold_ratio=1, args=None, is_maxim=True):
self.count = 0
self.fold_ratio = fold_ratio
self.is_maxim = is_maxim
train_transform = [
A.HorizontalFlip(),
A.RandomCrop(crop_size[1], crop_size[0]),
]
test_transform = [
A.CenterCrop(crop_size[1], crop_size[0]),
]
self.train_transform = train_transform
self.test_transform = test_transform
self.to_tensor = transforms.ToTensor()
self.args = args
def augment_training_data(self, image, depth):
H, W, C = image.shape
image, depth = self.common_augment(image, depth, self.train_transform)
self.count += 1
return image, depth
def common_augment(self, image, depth, transform):
additional_targets = {"depth": "mask"}
aug = A.Compose(transforms=transform, additional_targets=additional_targets)
augmented = aug(image=image, depth=depth)
image = augmented["image"]
depth = augmented["depth"]
if self.is_maxim:
image = self.apply_ai8x_transforms(image)
depth = self.apply_ai8x_transforms(depth)
return image, depth
def apply_ai8x_transforms(self, x):
import ai8x
x = self.to_tensor(x)
x = ai8x.normalize(self.args)(x)
x = ai8x.fold(fold_ratio=self.fold_ratio)(x)
return x
def augment_test_data(self, image, depth):
image, depth = self.common_augment(image, depth, self.test_transform)
return image, depth
class NYUv2Depth(BaseDataset):
def __init__(
self,
data_path,
args,
filenames_path,
is_train=True,
crop_size=(448, 576),
scale_size=None,
fold_ratio=1,
):
super().__init__(
crop_size,
fold_ratio=fold_ratio,
args=args,
is_maxim=getattr(args, "is_maxim", True),
)
self.scale_size = scale_size
self.is_train = is_train
self.data_path = Path(data_path)
self.image_path_list = []
self.depth_path_list = []
self.base_dir = Path(filenames_path).parent
txt_path = Path(filenames_path)
if is_train:
txt_path /= "nyu2_train.csv"
self.data_path = Path(self.data_path / "nyu2_train")
else:
txt_path /= "nyu2_test.csv"
self.data_path = Path(self.data_path / "nyu2_test")
import pandas as pd
self.df = pd.read_csv(txt_path, header=None, names=["img_path", "depth_path"])
phase = "train" if is_train else "test"
print("Dataset: NYU Depth V2")
print("# of %s images: %d" % (phase, len(self.df)))
def __len__(self):
return len(self.df)
def __getitem__(self, idx):
img_path = str(self.base_dir / self.df.loc[idx, "img_path"])
gt_path = str(self.base_dir / self.df.loc[idx, "depth_path"])
image = cv2.imread(img_path)
image = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)[..., np.newaxis]
depth = cv2.imread(gt_path, cv2.IMREAD_UNCHANGED).astype("float32")
if self.is_train:
image, depth = self.augment_training_data(image, depth)
else:
image, depth = self.augment_test_data(image, depth)
if self.scale_size:
image = cv2.resize(image, (self.scale_size[1], self.scale_size[0]))
depth = cv2.resize(depth, (self.scale_size[1], self.scale_size[0]))
image = np.expand_dims(image, axis=2)
depth = np.expand_dims(depth, axis=2)
depth = depth.astype("float32")
image = image.astype("float32")
depth_meters /= 1000.0
depth_meters = np.clip(depth_meters, 0, 1)
image /= 255.0
return image, depth_meters
def get_tf_nyuv2_ds(data_path, args):
nyuv2_ds_train = NYUv2Depth(
data_path=data_path,
filenames_path=data_path,
args=args,
is_train=True,
crop_size=args.crop_size,
scale_size=args.target_size,
fold_ratio=args.out_fold_ratio,
)
nyuv2_ds_test = NYUv2Depth(
data_path=data_path,
filenames_path=data_path,
is_train=False,
crop_size=args.crop_size,
scale_size=args.target_size,
fold_ratio=args.out_fold_ratio,
args=args,
)
_ = nyuv2_ds_train[0]
def generator(ds):
for sample in ds:
img, depth = sample
yield (img, depth)
output_signature = (
tf.TensorSpec(shape=(*args.target_size, 1), dtype=tf.float32),
tf.TensorSpec(shape=(*args.target_size, 1), dtype=tf.float32),
)
val_size = int(0.2 * len(nyuv2_ds_train)) # 20% of the dataset
seed_generator = torch.Generator().manual_seed(111)
train_dataset, val_dataset = random_split(
nyuv2_ds_train,
[len(nyuv2_ds_train) - val_size, val_size],
generator=seed_generator,
)
datasets = []
print("Train size: ", len(train_dataset))
print("Val size: ", len(val_dataset))
print("Test size: ", len(nyuv2_ds_test))
for ds in [train_dataset, val_dataset, nyuv2_ds_test]:
if cfg.do_overfit:
ds = Subset(ds, range(1))
elif cfg.do_subsample:
ds = Subset(ds, range(0, 1000))
tf_dataset = (
tf.data.Dataset.from_generator(
partial(generator, ds=ds), output_signature=output_signature
)
.batch(args.batch_size)
.prefetch(1)
)
datasets.append(tf_dataset)
return datasets