forked from Netflix/vmaf
-
Notifications
You must be signed in to change notification settings - Fork 0
/
run_vmaf_in_batch.py
executable file
·163 lines (131 loc) · 5.08 KB
/
run_vmaf_in_batch.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
#!/usr/bin/env python
import os
import sys
import re
import numpy as np
from vmaf.config import VmafConfig
from vmaf.core.asset import Asset
from vmaf.core.executor import run_executors_in_parallel
from vmaf.core.quality_runner import VmafQualityRunner
from vmaf.tools.misc import cmd_option_exists, get_cmd_option
from vmaf.tools.stats import ListStats
__copyright__ = "Copyright 2016-2019, Netflix, Inc."
__license__ = "Apache, Version 2.0"
FMTS = ['yuv420p', 'yuv422p', 'yuv444p', 'yuv420p10le', 'yuv422p10le', 'yuv444p10le']
OUT_FMTS = ['text (default)', 'xml', 'json']
POOL_METHODS = ['mean', 'harmonic_mean', 'min', 'median', 'perc5', 'perc10', 'perc20']
def print_usage():
print "usage: " + os.path.basename(sys.argv[0]) + \
" input_file [--model model_path] [--out-fmt out_fmt] [--parallelize] [--phone-model] [--ci]\n"
print "out_fmt:\n\t" + "\n\t".join(OUT_FMTS) + "\n"
print "input_file contains lines of:"
print "\tfmt width height ref_path dis_path\\n"
print "fmt:\n\t" + "\n\t".join(FMTS) + "\n"
def main():
if len(sys.argv) < 2:
print_usage()
return 2
input_filepath = sys.argv[1]
model_path = get_cmd_option(sys.argv, 2, len(sys.argv), '--model')
out_fmt = get_cmd_option(sys.argv, 2, len(sys.argv), '--out-fmt')
if not (out_fmt is None
or out_fmt == 'xml'
or out_fmt == 'json'
or out_fmt == 'text'):
print_usage()
return 2
pool_method = get_cmd_option(sys.argv, 2, len(sys.argv), '--pool')
if not (pool_method is None
or pool_method in POOL_METHODS):
print '--pool can only have option among {}'.format(', '.join(POOL_METHODS))
return 2
parallelize = cmd_option_exists(sys.argv, 2, len(sys.argv), '--parallelize')
phone_model = cmd_option_exists(sys.argv, 2, len(sys.argv), '--phone-model')
enable_conf_interval = cmd_option_exists(sys.argv, 2, len(sys.argv), '--ci')
assets = []
line_idx = 0
with open(input_filepath, "rt") as input_file:
for line in input_file.readlines():
# match comment
mo = re.match(r"^#", line)
if mo:
print "Skip commented line: {}".format(line)
continue
# match whitespace
mo = re.match(r"[\s]+", line)
if mo:
continue
# example: yuv420p 576 324 ref.yuv dis.yuv
mo = re.match(r"([\S]+) ([0-9]+) ([0-9]+) ([\S]+) ([\S]+)", line)
if not mo or mo.group(1) not in FMTS:
print "Unknown format: {}".format(line)
print_usage()
return 1
fmt = mo.group(1)
width = int(mo.group(2))
height = int(mo.group(3))
ref_file = mo.group(4)
dis_file = mo.group(5)
asset = Asset(dataset="cmd",
content_id=0,
asset_id=line_idx,
workdir_root=VmafConfig.workdir_path(),
ref_path=ref_file,
dis_path=dis_file,
asset_dict={'width':width, 'height':height, 'yuv_type':fmt}
)
assets.append(asset)
line_idx += 1
if enable_conf_interval:
from vmaf.core.quality_runner import BootstrapVmafQualityRunner
runner_class = BootstrapVmafQualityRunner
else:
runner_class = VmafQualityRunner
if model_path is None:
optional_dict = None
else:
optional_dict = {'model_filepath':model_path}
if phone_model:
if optional_dict is None:
optional_dict = {}
optional_dict['enable_transform_score'] = True
runner = runner_class(
assets,
None, fifo_mode=True,
delete_workdir=True,
result_store=None,
optional_dict=optional_dict,
optional_dict2=None,
)
runner.run(parallelize=parallelize)
results = runner.results
# output
for result in results:
# pooling
if pool_method == 'harmonic_mean':
result.set_score_aggregate_method(ListStats.harmonic_mean)
elif pool_method == 'min':
result.set_score_aggregate_method(np.min)
elif pool_method == 'median':
result.set_score_aggregate_method(np.median)
elif pool_method == 'perc5':
result.set_score_aggregate_method(ListStats.perc5)
elif pool_method == 'perc10':
result.set_score_aggregate_method(ListStats.perc10)
elif pool_method == 'perc20':
result.set_score_aggregate_method(ListStats.perc20)
else: # None or 'mean'
pass
if out_fmt == 'xml':
print result.to_xml()
elif out_fmt == 'json':
print result.to_json()
else: # None or 'json'
print '============================'
print 'Asset {asset_id}:'.format(asset_id=result.asset.asset_id)
print '============================'
print str(result)
return 0
if __name__ == "__main__":
ret = main()
exit(ret)