-
Notifications
You must be signed in to change notification settings - Fork 11
/
Copy pathmodeFilter.R
206 lines (174 loc) · 5.91 KB
/
modeFilter.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
#Mode filter, takes 5*5 neighborhood, removes noisy classified pixels.
# considers a 5*5 neighborhood, pixel value of middle pixel is equal to water if there are atleast 12 water pixels
# classified as not water otherwise
library(rgdal)
library(rgeos)
library(foreign)
infile.name.noExt <- 'ensemblepredict_10bands'
infile.name <- paste(infile.name.noExt,'.csv',sep='')
outfile.csv <- paste(infile.name.noExt,'_relaxedIterative_10bands_All.csv',sep='')
outfile.tif <- paste(infile.name.noExt,'_relaxedIterative_10bands_All.tif',sep='')
#read classified file
labelled.data <- read.csv(infile.name)
colnames(labelled.data) <- c('band4','band3','Aerosol','energy','band2','invDiffM','SWIR1','SWIR2','diffEntr','inertia','Class')
labelled.data$Class <- as.factor(labelled.data$Class)
ExtractNeighbors <- function(i,class.list){
#Assuming we are doing a 3 by 3 neighborhood i.e., 9 values
nbrs <- matrix(-1,5,5)
#print(i)
#Mange edge conditions left and right borders
if(i%%4218 ==0){#right most border
nbrs[1,1] <- class.list[i-8436]
nbrs[2,1] <- class.list[i-4219]
nbrs[3,1] <- class.list[i-2]
nbrs[4,1] <- class.list[i+4215]
nbrs[5,1] <- class.list[i+8432]
nbrs[1,2] <- class.list[i-8435]
nbrs[2,2] <- class.list[i-4218]
nbrs[3,2] <- class.list[i-1]
nbrs[4,2] <- class.list[i+4216]
nbrs[5,2] <- class.list[i+8433]
nbrs[1,3] <- class.list[i-8434]
nbrs[2,3] <- class.list[i-4217]
#nbrs[3,3] <- class.list[i]
nbrs[4,3] <- class.list[i+4217]
nbrs[5,3] <- class.list[i+8434]
}else if(i%%4218 ==4217){#one beside right border
nbrs[1,1] <- class.list[i-8436]
nbrs[2,1] <- class.list[i-4219]
nbrs[3,1] <- class.list[i-2]
nbrs[4,1] <- class.list[i+4215]
nbrs[5,1] <- class.list[i+8432]
nbrs[1,2] <- class.list[i-8435]
nbrs[2,2] <- class.list[i-4218]
nbrs[3,2] <- class.list[i-1]
nbrs[4,2] <- class.list[i+4216]
nbrs[5,2] <- class.list[i+8433]
nbrs[1,3] <- class.list[i-8434]
nbrs[2,3] <- class.list[i-4217]
#nbrs[3,3] <- class.list[i]
nbrs[4,3] <- class.list[i+4217]
nbrs[5,3] <- class.list[i+8434]
nbrs[1,4] <- class.list[i-8433]
nbrs[2,4] <- class.list[i-4216]
nbrs[3,4] <- class.list[i+1]
nbrs[4,4] <- class.list[i+4218]
nbrs[5,4] <- class.list[i+8435]
}else if(i%%4218==1){ # left most border
nbrs[1,3] <- class.list[i-8434]
nbrs[2,3] <- class.list[i-4217]
#nbrs[3,3] <- class.list[i]
nbrs[4,3] <- class.list[i+4217]
nbrs[5,3] <- class.list[i+8434]
nbrs[1,4] <- class.list[i-8433]
nbrs[2,4] <- class.list[i-4216]
nbrs[3,4] <- class.list[i+1]
nbrs[4,4] <- class.list[i+4218]
nbrs[5,4] <- class.list[i+8435]
nbrs[1,5] <- class.list[i-8432]
nbrs[2,5] <- class.list[i-4215]
nbrs[3,5] <- class.list[i+2]
nbrs[4,5] <- class.list[i+4219]
nbrs[5,5] <- class.list[i+8436]
}else if(i%%4218==2) {# second to left most border
nbrs[1,2] <- class.list[i-8435]
nbrs[2,2] <- class.list[i-4218]
nbrs[3,2] <- class.list[i-1]
nbrs[4,2] <- class.list[i+4216]
nbrs[5,2] <- class.list[i+8433]
nbrs[1,3] <- class.list[i-8434]
nbrs[2,3] <- class.list[i-4217]
#nbrs[3,3] <- class.list[i]
nbrs[4,3] <- class.list[i+4217]
nbrs[5,3] <- class.list[i+8434]
nbrs[1,4] <- class.list[i-8433]
nbrs[2,4] <- class.list[i-4216]
nbrs[3,4] <- class.list[i+1]
nbrs[4,4] <- class.list[i+4218]
nbrs[5,4] <- class.list[i+8435]
nbrs[1,5] <- class.list[i-8432]
nbrs[2,5] <- class.list[i-4215]
nbrs[3,5] <- class.list[i+2]
nbrs[4,5] <- class.list[i+4219]
nbrs[5,5] <- class.list[i+8436]
} else{
nbrs[1,1] <- class.list[i-8436]
nbrs[2,1] <- class.list[i-4219]
nbrs[3,1] <- class.list[i-2]
nbrs[4,1] <- class.list[i+4215]
nbrs[5,1] <- class.list[i+8432]
nbrs[1,2] <- class.list[i-8435]
nbrs[2,2] <- class.list[i-4218]
nbrs[3,2] <- class.list[i-1]
nbrs[4,2] <- class.list[i+4216]
nbrs[5,2] <- class.list[i+8433]
nbrs[1,3] <- class.list[i-8434]
nbrs[2,3] <- class.list[i-4217]
#nbrs[3,3] <- class.list[i]
nbrs[4,3] <- class.list[i+4217]
nbrs[5,3] <- class.list[i+8434]
nbrs[1,4] <- class.list[i-8433]
nbrs[2,4] <- class.list[i-4216]
nbrs[3,4] <- class.list[i+1]
nbrs[4,4] <- class.list[i+4218]
nbrs[5,4] <- class.list[i+8435]
nbrs[1,5] <- class.list[i-8432]
nbrs[2,5] <- class.list[i-4215]
nbrs[3,5] <- class.list[i+2]
nbrs[4,5] <- class.list[i+4219]
nbrs[5,5] <- class.list[i+8436]
}
return(nbrs)
}
LabelRelaxation <- function(i,class.list){
#first extract neighbors
nbrs <- ExtractNeighbors(i,class.list)
count <- sum(nbrs==2)
if(count>=13){ #more than half, change to water
return(2)
} else if(count == 12){ # exactly half, remains same
return(class.list[i])
}else
return(1)
}
ModeFilter <- function(){
print('Beginning assigning labels')
label <- rep(1,nrow(labelled.data))
min <- 8437
max <- nrow(labelled.data)-2*4218
label[min:max] <- sapply(min:max,LabelRelaxation,labelled.data$Class)
labelOld = labelled.data$Class
labelled.data$Class <<- as.factor(label)
countDifference <- sum(labelOld!=label)
cat('Difference in labels = ',countDifference,'\n')
}
currentTime <- proc.time()
ModeFilter()
print('Finished assigning labels')
cat('Execution time = ',proc.time()-currentTime,'\n')
myImg1 <- readGDAL('Clip-May28-Composite.TIF')
col1 = matrix(0, nrow = 2, ncol = 3)
col1[1, ] = c(255, 255, 255) # black everything else
col1[2, ] = c(0, 0, 255) # blue water
colorize1 <- function(d)
{
for(i in 1:3)
{
d[, i] <- rep(col1[d[1, 11], i], nrow(d))
}
d
}
print('Beginning to add colors')
labelled.data$ID <- seq.int(nrow(labelled.data))
t1 <- split(labelled.data, labelled.data$Class, drop = T)
t1 <- lapply(t1, FUN = colorize1)
print('Colorized completed')
x1 <- do.call("rbind", t1)
x1 <- x1[order(x1$ID), ]
x1 <- x1[,-12]
write.csv(x=x1,file=outfile.csv,row.names=F)
x1 <- x1[, -c(4,5,6,7,8,9,10,11)]
colnames(x1) <- c('band4','band3','band2')
myImg1@data[,c('band4','band3','band2')]<-x1
writeGDAL(myImg1, fname = outfile.tif)
print('Write completed')